DOI QR코드

DOI QR Code

Research Perspectives for Developing Seawater Intrusion Indicators in Changing Environments with Case Studies of Korean Coastal Aquifers: A Review

  • Chang, Sun Woo (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Il Hwan (Jeju Groundwater Research Center, Jeju Research Institute)
  • Received : 2024.04.22
  • Accepted : 2024.05.08
  • Published : 2024.08.01

Abstract

The global use of groundwater in coastal areas has increased. Events such as seawater intrusion (SWI) are expected to increase along with the acceleration of natural disasters owing to environmental changes such as climate change, resulting in large-scale damage worldwide. Current trends in the research of coastal groundwater and related natural disasters include testing and verifying technologies using major case studies from individual countries. We identified global research trends in coastal groundwater, related these trends to changing environments and climate, and confirmed the qualitative and quantitative growth of these studies. This study describes the theoretical background and techniques for coastal groundwater analysis and details regional-scale SWI indicators based on analytical and numerical studies. This review highlights recent technologies that consider uncertainty and promotes discussions on field data obtained using new technologies. Finally, the research findings and trends for a regional coastal aquifer in Korea are discussed to describe recent SWI approaches for groundwater resources.

Keywords

Acknowledgement

This research was supported by a grant from the Development Program of Minimizing Climate Change Impact Technology, funded by the National Research Foundation of Korea (NRF) of the Korean government (Ministry of Science and ICT, Grant No. NRF-2020M3H5A1080735), and the KICT Research Program (project no. 20240158-001, Development of Coastal Groundwater Management Solution), funded by the Ministry of Science and ICT.

References

  1. Abarca, E., Carrera, J., Sanchez-Vila, X. and Dentz, M. (2007). "Anisotropic dispersive Henry problem." Advances in Water Resources, Vol. 30, No. 4, pp. 913-926.
  2. Abarca, E. and Clement, T. P. (2009). "A novel approach for characterizing the mixing zone of a saltwater wedge." Geophysical Research Letters, Vol. 36, No. 6.
  3. Babu, R., Park, N., Yoon, S. and Kula, T. (2018). "Sharp interface approach for regional and well scale modeling of small island freshwater lens: Tongatapu Island." Water, Vol. 10, 1636, https://doi.org/10.3390/w10111636.
  4. Bailey, R. T., Jenson, J. W. and Olsen, A. E. (2009). "Numerical modeling of atoll island hydrogeology." Groundwater, Vol. 47, No. 2, pp. 184-196, https://doi.org/10.1111/j.1745-6584.2008.00520.x.
  5. Bakhtyar, R., Brovelli, A., Barry, D. A. and Li, L. (2011). "Wave-induced water table fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments." Coastal Engineering, Vol. 58, No. 1, pp. 103-118, https://doi.org/10.1016/j.coastaleng.2010.08.004.
  6. Bakker, M., Schaars, F., Hughes, J. D., Langevin, C. D. and Dausman, A. M. (2013). Documentation of the seawater intrusion (SWI2) package for MODFLOW: U.S. Geological Survey Techniques and Methods, Book 6, Chapt. A46.
  7. Barlow, P. M. and Reichard, E. G. (2010). "Saltwater intrusion in coastal regions of North America." Hydrogeology Journal, Vol. 18, No. 1, pp. 247-260, https://doi.org/10.1007/s10040-009-0514-3.
  8. Bear, J. and Dagan, G. (1964). "Some exact solutions of interface problems by means of the hodograph method." Journal of Geophysical Research, Vol. 69, No. 8, pp. 1563-1572, https://doi.org/10.1029/JZ069i008p01563.
  9. Boufadel, M. C. (2000). "A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions." Water Resources Research, Vol. 36, No. 9, pp. 2549-2565, https://doi.org/10.1029/2000wr900159.
  10. Boufadel, M. C., Suidan, M. T. and Venosa, A. D. (2006). "Tracer studies in laboratory beach simulating tidal influences." Journal of Environmental Engineering, Vol. 132, No. 6, pp. 616-623.
  11. Chachadi, A. G. and Lobo-Ferreira, J.-P. (2001). Sea water intrusion vulnerability mapping of aquifers using the GALDIT method, Vol. 4.
  12. Chang, S. W., Chung, I.-M., Kim, M.-G., Tolera, M. and Koh, G.-W. (2019). "Application of GALDIT in assessing the seawater intrusion vulnerability of Jeju Island, South Korea." Water, Vol. 11, No. 9, 1824.
  13. Chang, S. W., Chung, I.-M., Kim, M.-G. and Yifru, B. A. (2020). "Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea." Environmental Earth Sciences, Vol. 79, No. 22, 498, https://doi.org/10.1007/s12665-020-09254-2.
  14. Chang, S. W. and Clement, T. P. (2012). "Experimental and numerical investigation of saltwater intrusion dynamics in flux controlled groundwater systems." Water Resources Research, Vol. 48, No. 9, W09527, https://doi.org/10.1029/2012WR012134.
  15. Chang, S. W. and Clement, T. P. (2013). "Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge." Journal of Contaminant Hydrology, Vol. 147, pp. 14-24, https://doi.org/10.1016/j.jconhyd.2013.02.005.
  16. Chang, S. W., Nemec, K., Kalin, L. and Clement, T. P. (2016). "Impacts of climate change and urbanization on groundwater resources in a barrier Island." Journal of Environmental Engineering, Vol. 142, No. 12, D4016001, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001123.
  17. Chesnaux, R. and Allen, D. M. (2008). "Groundwater travel times for unconfined island aquifers bounded by freshwater or seawater." Hydrogeology Journal, Vol. 16, No. 3, pp. 437-445.
  18. Chun, J. A., Lim, C., Kim, D. and Kim, J. S. (2018). "Assessing impacts of climate change and sea-level rise on seawater intrusion in a coastal aquifer." Water, Vol. 10, No. 4, 357.
  19. Coulon, C., Pryet, A., Lemieux, J.-M., Yrro, B. J. F., Bouchedda, A., Gloaguen, E., Comte, J. C., Dupuis, J. C. and Banton, O. (2021). "A framework for parameter estimation using sharp-interface seawater intrusion models." Journal of Hydrology, Vol. 600, 126509. https://doi.org/ 10.1016/j.jhydrol.2021.126509.
  20. Croucher, A. E. and O'Sullivan, M. J. (1995). "The Henry problem for saltwater intrusion." Water Resources Research, Vol. 31, No. 7, pp. 1809-1814.
  21. Custodio, E. (2010). "Coastal aquifers of Europe: an overview." Hydrogeology Journal, Vol. 18, No. 1, pp. 269-280, https://doi.org/10.1007/s10040-009-0496-1.
  22. Custodio, E. and Bruggeman, G. A. (1987). "Groundwater problems in coastal areas." Studies and Reports in Hydrology, 45: UNESCO, Paris.
  23. Dausman, A. and Langevin, C. (2005). Movement of the saltwater interface in the Surficial Aquifer System in response to hydrologic stresses and water-management practices, Broward County, Florida, USGS Scientific Investigations Report 2004-5256, https://doi.org/10.3133/sir20045256.
  24. El-Kadi, A. I., Tillery, S., Whittier, R. B., Hagedorn, B., Mair, A., Ha, K. and Koh, G.-W. (2014). "Assessing sustainability of groundwater resources on Jeju Island, South Korea, under climate change, drought, and increased usage." Hydrogeology Journal, Vol. 22, No. 3, pp. 625-642, https://doi.org/10.1007/s10040-013-1084-y.
  25. Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C. T. and Ackerer, P. (2016). "The Henry problem: New semianalytical solution for velocity-dependent dispersion." Water Resources Research, Vol. 52, No. 9, pp. 7382-7407, https://doi.org/10.1002/2016wr019288.
  26. Fahs, M., Koohbor, B., Belfort, B., Ataie-Ashtiani, B., Simmons, C. T., Younes, A. and Ackerer, P. (2018). "A generalized semi-analytical solution for the dispersive henry problem: Effect of stratification and anisotropy on seawater intrusion." Water, Vol. 10, No. 2, 230.
  27. Ferguson, G. and Gleeson, T. (2012). "Vulnerability of coastal aquifers to groundwater use and climate change." Nature Clim. Change, Vol. 2, pp. 342-345, https://doi.org/10.1038/nclimate1413.
  28. Feseker, T. (2007). "Numerical studies on saltwater intrusion in a coastal aquifer in northwestern Germany." Hydrogeology Journal, Vol. 15, No. 2, pp. 267-279.
  29. Frind, E. O. (1982). "Simulation of long-term transient density-dependent transport in groundwater." Advances in Water Resources, Vol. 5, No. 2, pp. 73-88.
  30. Giambastiani, B. M. S., Antonellini, M., Oude Essink, G. H. P. and Stuurman, R. J. (2007). "Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model." Journal of Hydrology, Vol. 340, No. 1-2, pp. 91-104.
  31. Gingerich, S. B. and Voss, C. I. (2005). "Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA." Hydrogeology Journal, Vol. 13, No. 2, pp. 436-450, https://doi.org/10.1007/s10040-004-0371-z.
  32. Goebel, M., Knight, R. and Halkjaer, M. (2019). "Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California." Journal of Hydrology: Regional Studies, Vol. 23, 100602, https://doi.org/10.1016/j.ejrh.2019.100602.
  33. Goswami, R. R. and Clement, T. P. (2007). "Laboratory-scale investigation of saltwater intrusion dynamics." Water Resources Research, Vol. 43, No. 4. W04418, https://doi.org/10.1029/2006WR005151.
  34. Green, N. R. and MacQuarrie, K. T. B. (2014). "An evaluation of the relative importance of the effects of climate change and groundwater extraction on seawater intrusion in coastal aquifers in Atlantic Canada. Hydrogeology Journal, Vol. 22, No. 3, pp. 609-623, https://doi.org/10.1007/s10040-013-1092-y.
  35. Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H. and Aureli, A. (2011). "Beneath the surface of global change: Impacts of climate change on groundwater." Journal of Hydrology, Vol. 405, No. 3-4, pp. 532-560, https://doi.org/10.1016/j.jhydrol.2011.05.002.
  36. Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply, Paper 1613-C.
  37. Hermans, T. and Paepen, M. (2020). "Combined inversion of land and marine electrical resistivity tomography for submarine groundwater discharge and saltwater intrusion characterization." Geophysical Research Letters, Vol. 47, No. 3, e2019GL085877, https://doi.org/10.1029/2019GL085877.
  38. Horn, D. P. (2006). "Measurements and modelling of beach groundwater flow in the swash-zone: a review." Continental Shelf Research, Vol. 26, No. 5, pp. 622-652, https://doi.org/10.1016/j.csr.2006.02.001.
  39. Huyakorn, P. S., Andersen, P. F., Mercer, J. W. and White Jr., H. O. (1987). "Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite element model." Water Resources Research, Vol. 23, No. 2, pp. 293-312, https://doi.org/10.1029/WR023i002p00293.
  40. IPCC. (2007). Climate change 2007: Impacts, adaptation and vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press Cambridge.
  41. Jeen, S.-W., Kang, J., Jung, H. and Lee, J. (2021). "Review of seawater intrusion in western coastal regions of south Korea." Water, Vol. 13, No. 6, 761.
  42. Jung, E., Park, N. and Park, J. (2021). "Composite modeling for evaluation of groundwater and soil salinization on the multiple reclaimed land due to sea-level rise." Transport in Porous Media, Vol. 136, No. 1, pp. 271-293, https://doi.org/10.1007/s11242-020-01511-z.
  43. Kang, K.-M., Kim, D.-J., Kim, Y., Lee, E., Kim, B.-G., Kim, S. H., Ha, K., Koh, D.-C., Cho, Y.-K. and Kim, G. (2019). "Quantitative estimation of submarine groundwater discharge using airborne thermal infrared data acquired at two different tidal heights." Hydrological Processes, Vol. 33, No. 7, pp. 1089-1100, https://doi.org/10.1002/hyp.13387.
  44. Kerrou, J. and Renard, P. (2010). "A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes." Hydrogeology Journal, Vol. 18, pp. 55-72.
  45. Kim, D.-G., Shin, K.-H. and Kim, G.-B. (2018). "Suitability analysis of saline water intrusion monitoring wells near a waterway based on a numerical model and electric conductivity time series." Geosciences Journal, Vol. 22, No. 5, pp. 807-824, https://doi.org/10.1007/s12303-018-0001-8.
  46. Kim, I. and Yang, J.-S. (2018). "Prioritizing countermeasures for reducing seawater-intrusion area by considering regional characteristics using SEAWAT and a multi-criteria decision-making method." Hydrological Processes, Vol. 32, No. 25, pp. 3741-3757, https://doi.org/10.1002/hyp.13283.
  47. Kim, I. H., Chung, I.-M. and Chang, S. W. (2021). "Development of seawater intrusion vulnerability assessment for averaged seasonality of using modified GALDIT method." Water, Vol. 13, No. 13, 1820.
  48. Kim, K.-H., Shin, J.-Y., Koh, E.-H., Koh, G.-W. and Lee, K.-K. (2009). "Sea level rise around Jeju Island due to global warming and movement of groundwater/seawater interface in the Eastern Part of Jeju Island." Journal of Soil and Groundwater Environment, Vol. 14, No. 3, pp. 68-73.
  49. Kim, Y., Yoon, H. and Kim, G.-P. (2016). "Development of a novel method to monitor the temporal change in the location of the freshwater-saltwater interface and time series models for the prediction of the interface." Environmental Earth Sciences, Vol. 75, No. 10, 882, https://doi.org/10.1007/s12665-016-5650-1.
  50. Klassen, J. and Allen, D. M. (2017). "Assessing the risk of saltwater intrusion in coastal aquifers." Journal of Hydrology, Vol. 551, pp. 730-745, https://doi.org/10.1016/j.jhydrol.2017.02.044.
  51. Kohout, F. A. (1960). "Cyclic flow of salt water in the biscayne aquifer of southeastern florida." Journal of Geophysical Research, Vol. 65, No. 7, pp. 2133-2141, https://doi.org/10.1029/JZ065i007p02133.
  52. Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B. and Li, L. (2012). "Tidal influence on seawater intrusion in unconfined coastal aquifers." Water Resources Research, Vol. 48, No. 2, W02502, https://doi.org/10.1029/2011wr010678.
  53. Kundzewicz, Z. W. and DOll, P. (2009). "Will groundwater ease freshwater stress under climate change?" Hydrological Sciences Journal, Vol. 54, No. 4, pp. 665-675, https://doi.org/10.1623/hysj.54.4.665.
  54. Langevin, C. D. (2001). Simulation of ground-water discharge to Biscayne Bay, southeastern Florida (2000-4251). Retrieved from http://pubs.er.usgs.gov/publication/wri004251.
  55. Lee, C. H. and Cheng, R. T. S. (1974). "On seawater encroachment in coastal aquifers." Water Resources Research, Vol. 10, pp. 1039-1043.
  56. Lee, E., Kang, K.-M., Hyun, S. P., Lee, K.-Y., Yoon, H., Kim, S. H., Kim, Y., Xu, Z., Kim, D. J., Koh, D.-C. and Ha, K. (2016a). "Submarine groundwater discharge revealed by aerial thermal infrared imagery: a case study on Jeju Island, Korea." Hydrological Processes, Vol. 30, No. 19, pp. 3494-3506, https://doi.org/10.1002/hyp.10868.
  57. Lee, E., Lim, J.-W., Moon, H. and Lee, K.-K. (2015). "Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability." Environmental Earth Sciences, Vol. 73, pp. 1179-1190, https://doi.org/10.1007/s12665-014-3473-5.
  58. Lee, E., Shin, D., Hyun, S., Ko, K.-S., Moon, H., Koh, D.-C., Ha, K. and Kim, B.-Y. (2016b). "Periodic change in coastal microbial community structure associated with submarine groundwater discharge and tidal fluctuation: Changes in coastal microbial community." Limnology and Oceanography, Vol. 62, No. 2, pp. 437-451, https://doi.org/10.1002/lno.10433.
  59. Lee, E., Yoon, H., Hyun, S. P., Burnett, W. C., Koh, D.-C., Ha, K., Kim, D.J., Kim, Y. and Kang, K.-M. (2016c). "Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone." Limnology and Oceanography: Methods, Vol. 14, No. 11, pp. 725-735, https://doi.org/10.1002/lom3.10132.
  60. Li, H., Boufadel, M. C. and Weaver, J. W. (2008). "Tide-induced seawater-groundwater circulation in shallow beach aquifers." Journal of Hydrology, Vol. 352, No. 1-2, pp. 211-224.
  61. Li, H. and Jiao, J. J. (2003a). "Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer." Advances in Water Resources, Vol. 26, No. 1, pp. 9-16.
  62. Li, H. and Jiao, J. J. (2003b). "Tide-induced seawater-groundwater circulation in a multi-layered coastal leaky aquifer system." Journal of Hydrology, Vol. 274, No. 1-4, pp. 211-224.
  63. Loaiciga, H. A., Pingel, T. J. and Garcia, E. S. (2012). "Sea water intrusion by sea-level rise: Scenarios for the 21st century." Groundwater, Vol. 50, No. 1, pp. 37-47, https://doi.org/10.1111/j.1745-6584.2011.00800.x.
  64. Masterson, J. P. (2004). Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts (2004-5014). Retrieved from http://pubs.er.usgs.gov/publication/sir20045014.
  65. Masterson, J. P. and Garabedian, S. P. (2007). "Effects of sea-level rise on ground water flow in a coastal aquifer system." Groundwater, Vol. 45, No. 2, pp. 209-217, https://doi.org/10.1111/j.1745-6584.2006.00279.x.
  66. Meisler, H., Leahy, P. P. and Knobel, L. L. (1984). The effect of eustatic sea-level changes on saltwaterfreshwater relations in the northern Atlantic Coastal Plain, U.S. Geological Survey Water-Supply Paper 2255, 28 p, https://doi.org/10.3133/wsp2255.
  67. Melloul, A. and Collin, M. (2006). "Hydrogeological changes in coastal aquifers due to sea level rise." Ocean & Coastal Management, Vol. 49, No. 5-6, pp. 281-297.
  68. Memari, S. S., Bedekar, V. S. and Clement, T. P. (2020). "Laboratory and Numerical Investigation of Saltwater Intrusion Processes in a Circular Island Aquifer." Water Resources Research, Vol. 56, No. 2, e2019WR025325, https://doi.org/10.1029/2019WR025325.
  69. Meyer, R., Engesgaard, P. and Sonnenborg, T. O. (2019). "Origin and dynamics of saltwater intrusion in a regional aquifer: Combining 3-D saltwater modeling with geophysical and geochemical data." Water Resources Research, Vol. 55, No. 3, pp. 1792-1813, https://doi.org/10.1029/2018WR023624.
  70. Michael, H. A., Mulligan, A. E. and Harvey, C. F. (2005). "Seasonal oscillations in water exchange between aquifers and the coastal ocean." Nature, Vol. 436, No. 7054, pp. 1145-1148.
  71. Moe, H., Hossain, R., Fitzgerald, R., Banna, M., Mushtaha, A. and Yaqubi, A. (2001). Application of 3-Dimensional Coupled Flow and Transport Model in the Gaza Strip. Paper presented at the First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management, Essaouira, Morocco.
  72. Morgan, L. K. and Werner, A. D. (2014). "Seawater intrusion vulnerability indicators for freshwater lenses in strip islands." Journal of Hydrology, Vol. 508, pp. 322-327, https://doi.org/10.1016/j.jhydrol.2013.11.002.
  73. Morgan, L. K. and Werner, A. D. (2015). "A national inventory of seawater intrusion vulnerability for Australia." Journal of Hydrology: Regional Studies, Vol. 4, pp. 686-698, https://doi.org/10.1016/j.ejrh.2015.10.005.
  74. Navoy, A. S. (1991). Aquifer-estuary interaction and vulnerability of groundwater supplies to sea level rise-driven saltwater intrusion. (PhD Thesis), Pennsylvania State University, USA.
  75. Nicholls, R. J., Wong, P. P., Burkett, V., Woodroffe, C. D. and Hay, J. (2008). "Climate change and coastal vulnerability assessment: scenarios for integrated assessment." Sustainability Science, Vol. 3, No. 1, pp. 89-102. https://doi.org/10.1007/s11625-008-0050-4.
  76. Oki, D. S. (2005). Numerical simulation of the effects of low-permeability valley-fill barriers and the redistribution of ground-water withdrawals in the Pearl Harbor area, Oahu, Hawaii, U.S. Geological Survey Scientific Investigations Report 2005-5253, 111 p.
  77. Oostrom, M., Hayworth, J. S., Dane, J. H. and Guen, O. (1992). "Behavior of dense aqueous phase leachate plumes in homogeneous porous media." Water Resources Research, Vol. 28, No. 8, pp. 2123-2134, https://doi.org/10.1029/92wr00711.
  78. Oude Essink, G. H. P. (2001). "Salt water intrusion in a three-dimensional groundwater system in The Netherlands: A numerical study." Transport in Porous Media, Vol. 43, No. 1, pp. 137-158, https://doi.org/10.1023/a:1010625913251.
  79. Oude Essink, G. H. P., van Baaren, E. S. and de Louw, P. G. B. (2010). "Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands." Water Resources Research, Vol. 46, W00F04, https://doi.org/10.1029/2009wr008719.
  80. Oz, I., Shalev, E., Yechieli, Y., Gavrieli, I. and Gvirtzman, H. (2014). "Flow dynamics and salt transport in a coastal aquifer driven by a stratified saltwater body: Lab experiment and numerical modeling." Journal of Hydrology, Vol. 511, pp. 665-674, https://doi.org/10.1016/j.jhydrol.2014.02.020.
  81. Parson, E., Burkett, V., Fisher-Vanden, K., Keith, D., Mearns, L., Pitcher, H., Rosenzweig, C. and Webster, M. (2007). Global change scenarios: their development and use, US Department of Energy Publications. 7.
  82. Pinder, G. F. and Cooper, H. H., Jr. (1970). "A numerical technique for calculating the transient position of the saltwater front." Water Resources Research, Vol. 6, No. 3, pp. 875-882, https://doi.org/10.1029/WR006i003p00875.
  83. Praveena, S. M. and Aris, A. Z. (2010). "Groundwater resources assessment using numerical model: A case study in low-lying coastal area. International Journal of Environmental Science & Technology, Vol. 7, No. 1, pp. 135-146, https://doi.org/10.1007/BF03326125.
  84. Praveenaa, S. M., Abdullaha, M. H., Arisb, A. Z. and Bidina, K. (2010). Recharge and aquifer response: Manukan Island, s Aquifer, Sabah, Malaysia. EnvironmentAsia, Vol. 3.
  85. Provost, A. M. and Voss, C. I. (2019). SUTRA, a model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport-Documentation of generalized boundary conditions, a modified implementation of specified pressures and concentrations or temperatures, and the lake capability, U.S. Geological Survey Techniques and Methods, book 6, chap. A52, 62 p, https://doi.org/10.3133/tm6A52.
  86. Qu, W., Li, H., Wang, C., Zheng, C., Wang, X. and Zhang, Y. (2020). "Numerical simulations of seasonally oscillated groundwater dynamics in coastal confined aquifers." Ground Water, Vol. 58, No. 4, pp. 550-559, https://doi.org/10.1111/gwat.12926.
  87. Rajabi, M. M. and Ketabchi, H. (2017). "Uncertainty-based simulation-optimization using Gaussian process emulation: Application to coastal groundwater management." Journal of Hydrology, Vol. 555, pp. 518-534, https://doi.org/10.1016/j.jhydrol.2017.10.041.
  88. Ranjan, P., Kazama, S. and Sawamoto, M. (2006). "Effects of climate and land use changes on groundwater resources in coastal aquifers." Journal of Environmental Management, Vol. 80, No. 1, pp. 25-35, https://doi.org/10.1016/j.jenvman.2005.08.008.
  89. Ranjan, P., Kazama, S. and Sawamoto, M. (2006). "Effects of climate change on coastal fresh groundwater resources." Global Environmental Change, Vol. 16, No. 4, pp. 388-399, https://doi.org/10.1016/j.gloenvcha.2006.03.006.
  90. Robinson, C., Gibbes, B. and Li, L. (2006). "Driving mechanisms for groundwater flow and salt transport in a subterranean estuary." Geophysical Research Letters, Vol. 33, No. 3. https://doi.org/10.1029/2005GL025247.
  91. Robinson, C., Li, L. and Barry, D. A. (2007a). "Effect of tidal forcing on a subterranean estuary." Advances in Water Resources, Vol. 30, No. 4, pp. 851-865.
  92. Robinson, C., Li, L. and Prommer, H. (2007b). "Tide-induced recirculation across the aquifer-ocean interface." Water Resources Research, Vol. 43, No. 7, W07428, https://doi.org/10.1029/2006wr005679.
  93. Robinson, C., Xin, P., Li, L. and Barry, D. A. (2014). "Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions." Water Resources Research, Vol. 50, No. 1, pp. 165-181, https://doi.org/10.1002/2013WR013813.
  94. Roy, D. K. and Datta, B. (2020). "Saltwater intrusion prediction in coastal aquifers utilizing a weighted-average heterogeneous ensemble of prediction models based on Dempster-Shafer theory of evidence." Hydrological Sciences Journal, Vol. 65, No. 9, pp. 1555-1567, https://doi.org/10.1080/02626667.2020.1749764.
  95. Rozell, D. J. and Wong, T.-F. (2010). "Effects of climate change on groundwater resources at Shelter Island, New York State, USA." Hydrogeology Journal, Vol. 18, No. 7, pp. 1657-1665, https://doi.org/10.1007/s10040-010-0615-z.
  96. Segol, G. (1994). Classic Groundwater Simulations Proving and Improving Numerical Models. Old Tappan, N. J.
  97. Segol, G. and Pinder, G. (1976). "Transient Simulation of Saltwater Intrusion in Southeastern Florida." Water Resources Research, Vol. 12, No. 1, pp. 65-70.
  98. Sherif, M. M. and Singh, V. P. (1999). "Effect of climate change on sea water intrusion in coastal aquifers." Hydrological Processes, Vol. 13, No. 8, pp. 1277-1287, https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8<1277::AID-HYP765>3.0.CO;2-W.
  99. Shin, J. and Hwang, S. (2020). "A Borehole-Based Approach for Seawater Intrusion in Heterogeneous Coastal Aquifers, Eastern Part of Jeju Island, Korea." Water, Vol. 12, No. 2, 609.
  100. Simpson, M. J. and Clement, T. P. (2003). "Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models." Advances in Water Resources, Vol. 26, No. 1, pp. 17-31.
  101. Simpson, M. J. and Clement, T. P. (2004). "Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models." Water Resources Research, Vol. 40, No. 1, W01504, https://doi.org/10.1029/2003wr002199.
  102. Strack, O. D. L. (1976). "A single-potential solution for regional interface problems in coastal aquifers." Water Resources Research, Vol. 12, No. 6, pp. 1165-1174.
  103. Sulzbacher, H., Wiederhold, H., Siemon, B., Grinat, M., Igel, J., Burschil, T., Gunther, T. and Hinsby, K. (2012). "Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods." Hydrology and Earth System Sciences, Vol. 16, No. 10, pp. 3621-3643, https://doi.org/10.5194/hess-16-3621-2012.
  104. Tamai, N. and Shima, S. (1967). "Salt-water wedge in unconfined coastal aquifers." Transactions of the Japan Society of Civil Engineers, Vol. 1967, pp. 31-38.
  105. Tang, G., Yang, M., Chen, X., Chen, T., Xiaohua, C. and Fang, H. (2020). "A new idea for predicting and managing seawater intrusion in coastal channels of the Pearl River, China." Journal of Hydrology, Vol. 590, 125454, https://doi.org/10.1016/j.jhydrol.2020.125454.
  106. Taniguchi, M., Burnett, W. C., Cable, J. E. and Turner, J. V. (2002). "Investigations of submarine groundwater discharge." Hydrological Processes, Vol. 16, No. 1, pp. 2115-2129.
  107. van der Geest, K., Burkett, M., Fitzpatrick, J., Stege, M. and Wheeler, B. (2020). "Climate change, ecosystem services and migration in the Marshall Islands: are they related?" Climatic Change, Vol. 161, No. 1, pp. 109-127, https://doi.org/10.1007/s10584-019-02648-7.
  108. Vandenbohede, A. and Lebbe, L. (2002). "Numerical modelling and hydrochemical characterisation of a fresh-water lens in the Belgian coastal plain." Hydrogeology Journal, Vol. 10, No. 5, pp. 576-586, https://doi.org/10.1007/s10040-002-0209-5.
  109. Vappicha, V. N. and Nagaraja, S. (1976). "An approximate solution for the transient interface in a coastal aquifer." Journal of Hydrology, Vol. 31, pp. 161-173.
  110. Veerapaga, N., Azhikodan, G., Shintani, T., Iwamoto, N. and Yokoyama, K. (2019). "A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary." Ocean Modelling, Vol. 141, 101425, https://doi.org/10.1016/j.ocemod.2019.101425.
  111. Voss, C. I. and Souza, W. R. (1987). "Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone." Water Resources Research, Vol. 23, No. 10, pp. 1851-1866. https://doi.org/10.1029/WR023i010p01851.
  112. Werner, A. D. (2010). "A review of seawater intrusion and its management in Australia." Hydrogeology Journal, Vol. 18, No. 1, pp. 281-285, https://doi.org/10.1007/s10040-009-0465-8.
  113. Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T. and Barry, D. A. (2013). "Seawater intrusion processes, investigation and management: Recent advances and future challenges." Advances in Water Resources, Vol. 51, pp. 3-26, https://doi.org/10.1016/j.advwatres.2012.03.004.
  114. Werner, A. D. and Gallagher, M. R. (2006). "Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling." Hydrogeology Journal, Vol. 14, No. 8, pp. 1452-1469, https://doi.org/10.1007/s10040-006-0059-7.
  115. Werner, A. D. and Simmons, C. T. (2009). "Impact of sea-level rise on sea water intrusion in coastal aquifers." Ground Water, Vol. 47, No. 2, pp. 197-204. Retrieved from https://doi.org/10.1111/j.1745-6584.2008.00535.x.
  116. Werner, A. D., Ward, J. D., Morgan, L. K., Simmons, C. T., Robinson, N. I. and Teubner, M. D. (2011). "Vulnerability indicators of sea water intrusion." Groundwater, Vol. 50, No. 1, pp. 48-58, https://doi.org/10.1111/j.1745-6584.2011.00817.x.
  117. White, I. and Falkland, T. (2010). "Management of freshwater lenses on small Pacific islands." Hydrogeology Journal, Vol. 18, No. 1, pp. 227-246, https://doi.org/10.1007/s10040-009-0525-0.
  118. Won, J.-H., Lee, J.-Y., Kim, J.-W. and Koh, G.-W. (2006). "Groundwater occurrence on Jeju Island, Korea." Hydrogeology Journal, Vol. 14, No. 4, pp. 532-547, https://doi.org/10.1007/s10040-005-0447-4.
  119. Youn, J., Kim, G. and Jung, C. Y. (2003). "A hydrogeolgocal study on high saline groundwater of Handong-ri in the eastern part of Jeju Island, Korea." Journal of the Geological Society of Korea, Vol. 39, No. 1, pp. 115-131 (in Korean).