과제정보
The authors sincerely thank the anonymous reviewer for his/her careful reading, constructive comments that improved the manuscript substantially.
참고문헌
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- A. Bahyrycz and K. Cieplinski, On an equation characterizing multi-Jensen-quadratic mappings and its Hyers-Ulam stability via a fixed point method, J. Fixed Point Theory Appl. 18 (2016), no. 4, 737-751. https://doi.org/10.1007/s11784-016-0298-8
- A. Bahyrycz, K. Cieplinski, and J. Olko, On an equation characterizing multi-additive-quadratic mappings and its Hyers-Ulam stability, Appl. Math. Comput. 265 (2015), 448-455. https://doi.org/10.1016/j.amc.2015.05.037
- A. Bahyrycz, K. Cieplinski, and J. Olko, On an equation characterizing multi-Cauchy-Jensen mappings and its Hyers-Ulam stability, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 6, 1349-1358. https://doi.org/10.1016/S0252-9602(15)30059-X
- A. Bahyrycz and J. Olko, On stability and hyperstability of an equation characterizing multi-Cauchy-Jensen mappings, Results Math. 73 (2018), no. 2, Paper No. 55, 18 pp. https://doi.org/10.1007/s00025-018-0815-8
- A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021, Paper No. 145, 13 pp. https://doi.org/10.1186/s13660-021-02682-z
- A. Bodaghi, Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach, Math. Slovaca 71 (2021), no. 1, 117-128. https://doi.org/10.1515/ms-2017-0456
- J. Brzdek, J. Chudziak, and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728-6732. https://doi.org/10.1016/j.na.2011.06.052
- K. Cieplinski, On multi-Jensen functions and Jensen difference, Bull. Korean Math. Soc. 45 (2008), no. 4, 729-737. https://doi.org/10.4134/BKMS.2008.45.4.729
- K. Cieplinski, Stability of the multi-Jensen equation, J. Math. Anal. Appl. 363 (2010), no. 1, 249-254. https://doi.org/10.1016/j.jmaa.2009.08.021
- K. Cieplinski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010), no. 10, 1291-1294. https://doi.org/10.1016/j.aml.2010.06.015
- K. Cieplinski, On Ulam stability of a functional equation, Results Math. 75 (2020), no. 4, Paper No. 151, 11 pp. https://doi.org/10.1007/s00025-020-01275-4
- M. Eshaghi Gordji, M. B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, and A. Ebadian, On the stability of J*-derivations, J. Geom. Phys. 60 (2010), no. 3, 454-459. https://doi.org/10.1016/j.geomphys.2009.11.004
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434 https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137-3143. https://doi.org/10.1090/S0002-9939-98-04680-2
- E. Keyhani, M. Hassani, and A. Bodaghi, On set-valued multiadditive functional equations, Filomat 38 (2024), no. 5, 1847-1857.
- Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), no. 2, 499-507.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second edition, Birkhauser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8749-5
- Y.-H. Lee and K.-W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315. https://doi.org/10.1006/jmaa.1999.6546
- M. Maghsoudi and A. Bodaghi, On the stability of multi m-Jensen mappings, Casp. J. Math. Sci. 9 (2020), no. 2, 199-209.
- C. Park and A. Bodaghi, On the stability of *-derivations on Banach *-algebras, Adv. Difference Equ. 2012, 2012:138, 10 pp. https://doi.org/10.1186/1687-1847-2012-138
- C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach, Abstr. Appl. Anal. 2009, Art. ID 360432, 17
- W. Prager and J. Schwaiger, Multi-affine and multi-Jensen functions and their connection with generalized polynomials, Aequationes Math. 69 (2005), no. 1-2, 41-57. https://doi.org/10.1007/s00010-004-2756-4
- W. Prager and J. Schwaiger, Stability of the multi-Jensen equation, Bull. Korean Math. Soc. 45 (2008), no. 1, 133-142. https://doi.org/10.4134/BKMS.2008.45.1.133
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
- J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), no. 2, 185-190.
- J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), no. 5, 231-235.
- P. K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC, Boca Raton, FL, 2011.
- S. Salimi and A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings, J. Fixed Point Theory Appl. 22 (2020), no. 1, Paper No. 9, 15 pp. https://doi.org/10.1007/s11784-019-0738-3
- J. Tipyan, C. Srisawat, P. Udomkavanich, and P. Nakmahachalasint, The generalized stability of an n-dimensional Jensen type functional equation, Thai J. Math. 12 (2014), no. 2, 265-274.
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
- T. Z. Xu, Stability of multi-Jensen mappings in non-Archimedean normed spaces, J. Math. Phys. 53 (2012), no. 2, 023507, 9 pp. https://doi.org/10.1063/1.3684746
- T. Z. Xu, Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces, Abstr. Appl. Anal. 2013, Art. ID 648709, 12 pp. https://doi.org/10.1155/2013/648709