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MULTI-JENSEN AND MULTI-EULER-LAGRANGE ADDITIVE
MAPPINGS

ABASALT BODAGHI AND AMIR SAHAMI

ABSTRACT. In this work, an alternative fashion of the multi-Jensen is
introduced. The structures of the multi-Jensen and the multi-Euler-
Lagrange-Jensen mappings are described. In other words, the system
of n equations defining each of the mentioned mappings is unified as a
single equation. Furthermore, by applying a fixed point theorem, the
Hyers-Ulam stability for the multi-Euler-Lagrange-Jensen mappings in
the setting of Banach spaces is established. An appropriate counterex-
ample is supplied to invalidate the results in the case of singularity for
multiadditive mappings.

1. Introduction

The stability problem of the functional equation, initiated by the celebrated
Ulam’s question [33] about the stability of group homomorphisms (answered
by Hyers [16], Aoki [1], Rassias [27] and Gavruta [15] for additive and linear
mappings) has been growing rapidly over the last decades and applied in sci-
ences and engineering. Recall that a functional equation I' is said to be stable
if any function f satisfying the equation I' approximately must be near to an
exact solution of T'.

It is well-known that among functional equations the additive (Cauchy)
equation

(1.1) Az +y) = A(z) + Aly)
and the Jensen functional equation
1) p ( t y) 1@

play a significant role in many parts of mathematics. More information about
them (in particular, about their solutions and stability) and their applications
can be found for instance in [17,19-21] and [30].

Received July 7, 2023; Revised April 16, 2024; Accepted May 31, 2024.

2010 Mathematics Subject Classification. 39B52, 39B72, 39B82, 46B03.

Key words and phrases. Banach space, Hyers-Ulam stability, multi-Euler-Lagrange addi-
tive mapping, multi-Jensen.

(©2024 Korean Mathematical Society

673



674 A. BODAGHI AND A. SAHAMI

Throughout this paper, N and QQ are the sets of all positive integers and
rationals, respectively, Ny := NU {0}, R := [0,00). Moreover, for the set X,

n—times

we denote X x X x --- x X by X™.
Let V be a commutative group, W be a linear space over Q, and n € N with
n > 2. A mapping f: V™" — W is called

e multiadditive if it satisfies (1.1) in each variable;
o multi-Jensen if it satisfies (1.2) in each variable.

It is shown in [11] that a mapping f is multiadditive if and only if it satisfies

(1.3) f(x1+a2) = Z f@jn, - 2,n),

jlv“vjne{va}

where z; = (21,...,2;,) € V" with j € {1,2}. A lot of information about the
structure of multiadditive mappings and their Ulam stabilities are available in
[11,12,18] and [20, Sections 13.4 and 17.2].

The notion of multi-Jensen mappings with the connection to the general-
ized polynomials has been introduced by Prager and Schwaiger [25], where
they obtained the general form of such mappings. In other words, the aim of
this note was to study the stability of the multi-Jensen equation. Moreover,
they represented a characterization of multi-Jensen mappings as an equation
in [26, Lemma 1.1]. Next, the stability of multi-Jensen mappings in various
normed spaces has been investigated by a number of authors; see for instance
[9,10] and [34]. Note that the multi-m-Jensen mappings (when m > 2) and
their generalized form were studied in [22] and [32]. For some results on the
characterization and stability of multi-Cauchy-Jensen, multi-Jensen-quadratic
and multiadditive-quadratic, we refer to [2-7] and [31].

An alternative version of Jensen equation (1.2), namely the Jensen-type
functional equation is as follows:

(1.4) J<x;y>+J<x2y> = J(x).

The Hyers-Ulam stability of homomorphisms in C*-algebras for equation (1.2)
was investigated in [24]. Additionally, the generalized case of the Jensen-type
functional equation is given by

(1.5) r[j (”“"jy) +J<x;y>} — 27 (x),

where r € (1,00). The stability and superstability for J*- derivations in J*-
algebras for (1.5) were studied in [13] (see also [23]). The equation

(1.6) J(@+y) +3(x —y) = 23(x)

is a special case of (1.5) when r = 1, where we focus on it in Sections 2 and
3. Recall that a mapping A is called Fuler-Lagrange additive if it satisfies the
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equation
(1.7) A(ax 4+ by) + A(bz + ay) = (a + b)[A(z) + A(y)],

where a,b € R\{0} are fixed with a + b # 0,%£1. In fact, Rassias [28, 29]
introduced and investigated the stability problem of Ulam for (1.7). Next, Xu
extended the definition above to several variables mappings [35]. One can easily
verified that the function f(x) = cx is a common solution of equations (1.1),
(1.5) and (1.7). In addition, equations (1.2), (1.4) and (1.6) are valid for the
function f(x) = cx +b.

The rest of the current paper is organized as follows: In Section 2, we first
define a new form of the multi-Jensen and also recall the multi-Euler-Lagrange
additive mappings from [35]. We describe the structure of such mappings and
indeed we prove that every multi-Jensen and multi-Euler-Lagrange additive
mapping can be shown a single equation. Section 3 is devoted to the study of
structure of multi-Euler-Lagrange-Jensen mappings. In other words, we reduce
the system of n equations defining the multi-Euler-Lagrange-Jensen mappings
to obtain a single equation. In Section 4, we prove the Hyers-Ulam stability for
the multi-Euler-Lagrange-Jensen mappings in the setting of Banach spaces by
applying a fixed point method. As an application of this result, we establish
the (Hyers-Rassias) stability of multi-Euler-Lagrange mappings. In Section 5,
by means of [20, Theorem 13.4.3], we present an example for the non-stability
case on multiadditive mappings.

2. Characterization of multi-Jensen and multi-Euler-Lagrange
additive mappings

Let S be a subset of R. From now on, for any | € Ng,n € N, t =
(t1,...,tp) € S™ and © = (z1,...,2,) € V™ we write lz := (lxy,...,lz,)
and tz := (t121,...,t,xy,). Throughout this paper, it is assumed that V' and

o] _

W are vector spaces over R, n € N and ;"' = (215, %2i,...,Tn;) € V", where

i € {1,2}. We will write xgn] simply «; (used in the last section) when no
confusion can arise.

2.1. Multi-Jensen mappings

Motivated by equation (1.6), we bring a new definition of multi-Jensen map-
pings as follows.

Definition 2.1. A mapping f: V" — W is called multi-Jensen if it satisfies
Jensen’s equation (1.6) in each of its n arguments, that is,

f('Ul,...,'Uifl,’Ui +U£,vi+1,...,vn) -|—f(’l)1,...,’0i,1,’l)i —U;—,’Ui+1,...,’vn)
= 2f(’U1, N ,’Un).
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In the following result, we describe the multi-Jensen mappings as a single
equation. Here and subsequently, the notation {—1,1}" means
n—times
{-1,1} x ... x {=1,1}.

Theorem 2.2. A mapping f : V" — W is multi-Jensen if and only if it
satisfies the equation

(2.1) Z f (x[ln] + qa:[zn]> =2"f (a:[ln]) ,

ge{-1,1}"

for all x[ln], CL‘[Q Meyn,

Proof. Suppose that f is a multi-Jensen mapping. We proceed this implication
by induction on n. For n = 1, the result is trivial. Assume that (2.1) holds for
n = k, that is,

(2:2) > f(allraadls) =25 (o1, 2),

ge{-1,1}*

for all 2"zl € V¥ and 2 € V. Hence,

Z f(x[k+1]+ [k+11)

qe{—1,1}k+1

= Z Z f (gj[k] —+ qu ,l’l k+1 T txo k+1>

qe{—1,1}F te{-1,1}

(2.3) =2 Z f (x[k] + qa:2 ,xl k+1)

ge{—1,1}F

It now follows the validity of (2.1) for k£ + 1 from (2.2) and (2.3).
Conversely, assume that f fulfills (2.1). Fix j € {1,...,n}, put axe = 0 for
all k€ {1,...,n}\{j}. We have

2" Hf(za, .. VL1, —1, 15+ T2, T1j41s - -« Tln)
+ f(Z11,- T 1, T1j — T2j, T j41s - - -5 T1n))
(24) = an(l'll, . 7$1,j7179€j1,3€1,j+1, . 7$n1)~

Relation (2.4) implies that f is Jensen in the jth variable. Since j is arbitrary,
we obtain the desired result. O
2.2. Multi-Euler-Lagrange additive mappings

We start this subsection by a definition, which has been presented by Xu in
[35].
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Definition 2.3. A mapping f : V" — W is called multi-Euler-Lagrange
additive if it satisfies the Euler-Lagrange additive equation (1.7) in each of
their n arguments, namely,
[f (’Ulv cey V-1, Q404 + bivrli7vi+17 .o 7vn)
+f (1,001, biv; + @), . vp)]
= (ai + bl) [f(’l)l, ey Vi1, Vg e e ,’Un) + f(’Ul, . ,vi,l,v§7 . ,’Un>] s
where a;j,b; € R\{0} are fixed with a; +b; # 0, £1.

In the sequel, consider aEn] = (a1, a2, -, ain) € R™\{(0,...,0)} such that
aij+ag; # 0, where i € {1,2} and j € {1,...,n}. We write aEn] simply a; when
there is no ambiguity. For x1, x5 € V™ and a1, as as in the above, consider the
following notations:

2 2
(25) Bj = Zaijxij and B; = Z(Lg,i’jl'ij,
i=1 i=1
where j € {1,...,n}. In continuation, we show that the equation

26) > f(Br,. B =[[laytay) Y @)
‘BjE{Bj,B;.} j=1 I, ,lne{1,2}
je{1,...,n}

holds for any multi-Euler-Lagrange additive mapping and vice versa. For this,

we need the following definition.

Definition 2.4. We say a mapping f: V" — W

(i) satisfies (has) the linear condition in the jth variable if
flz1, 0,252,072, 2415 2n) = a7 f (21,000 2521, 25, Zj 41 - -5 Zn),

for all z1,...,2z, € V", where a* € {a1j,a2;,a1j + az;};
(ii) has zero condition if f(x) = 0 for any x € V™ with at least one com-
ponent which is equal to zero.

Remark 2.5. It is clear that if a mapping f : V" — W satisfies the linear
condition in the jth variable then it has zero condition in the same variable.
Therefore, if f has the linear condition in each variable, then it has zero con-
dition. We will use from this fact to prove the upcoming result.

Theorem 2.6. For a mapping f : V" — W, the following assertions are
equivalent:
(i) f is multi-Euler-Lagrange additive;

(ii) f satisfies equation (2.6) and the linear condition in each variable.

Proof. (i) = (ii) One can show that f satisfies the linear condition in each
variable. We now proceed the proof of this implication by induction on n so
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that f satisfies equation (2.6). For n =1, it is trivial that f satisfies equation
(1.7). Assume that (2.6) is valid for some positive integer n > 1. Then

> (B, Buga)

%je{Bj,B;}
je{l,...,n+1}

= > fB...BuB)+ Y. f(Br,..., B B))
B;€{B;,B}} B e{B, B}
Je{1,...,n} je{l,...,n}

= (a1,n+1 + a2,n41) ( Z fF(B1,..., B, T1,n41)

. . /
B, E€{B;.B}}

+ Z f(%l,..‘7%n,$2,n+l))

n
= (al,n+l +a2,n+1 H aij +a2] ( E f(l'lll,-..,xlnn,l‘l,n+1)
j=1 Iy, ,ln€{1,2}

+ Z f(xlllv'--axlnn7x2,n+1))
ll,...,lnE{l,Z}

n+1

= ] ] (a1 +az;) > f@1s e T nt1)-

1 Iy, by €{1,2}

+

<.
Il

(ii)=(i) Fix j € {1,...,n}. Putting zo;, = 0 for all k € {1,...,n}\{j} in
(2.6) and using Remark 2.5, we can show that the left side of (2.6) will be as
follows:

f (auzn, ceey A1 5121 51, Bj7 A1, 541,541y« - - ,alnfl?m)

+f (a21$11, ceey 25171 51, Bj» A2 41T, 5415+« aznxln)
+f (a115€11,-~-7al,j—livl,j—hB§,a1,j+19€1¢j+1,~-~,a1n901n)
+f (a21x11a~~-7a2,j71‘r1,j717B;';GQ,j+1$1,j+1a~~-7a2n$1n)

= (11021012022 *** A1,j-102 j-101 j4+102 41 ' A1nA2n
X |:f($117 s X151, Bj, T1,54+15--- ,Z‘ln)

(27) +f(l‘ll,...,$1,j,1,B;,$1,j+1,...,l‘ln) .

On the other hand, by the replacements above, the right side of (2.6) is as

H a1 + azg) [f(l”m e T 1, T L1 gLy - - > Tln)

(28) + f(xn, ey ‘Tl,j—17 l‘gj, xl,j-&-l, e ,SCln) .
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It follows from (2.7) and (2.8) that f is Euler-Lagrange additive in the jth
variable. Since j is arbitrary, we obtain the desired result, and this finishes the
proof. (I

3. Characterization of multi-Euler-Lagrange-Jensen mappings

Definition 3.1. Let V and W be linear spaces, n € N and k € {0,...,n}. A
mapping f : V™ — W is called k-Euler-Lagrange additive and n — k-Jensen
(briefly, multi-Euler-Lagrange-Jensen) if f is Euler-Lagrange additive (in sense
of Definition 2.3) in each of some k variables and is Jensen in each of the other
variables (in sense of equation (1.6)).

In Definition 3.1, we assume for simplicity that f is Euler-Lagrange additive
in each of the first k£ variables, but one can obtain analogous results without
this assumption. Let us note that for K = n (k = 0), the above definition leads
to the so-called Euler-Lagrange additive (multi-Jensen) mappings, defined in
the previous section.

In what follows, we assume that V and W are vector spaces over Q. More-
over, we identify z = (x1,...,2,) € V" with (zl¥, z"=*) € V¥ x V=% where
z*l = (z1,...,2p) and "% = (2341,...,2,), and we adopt the conven-

tion that (¢!, 20 := 2" .= (2l z[7]). Put xgk] = (@i1,...,2) € VF and

xEnik] = (T ft1s-- > Tin) € V' F where i € {1,2}.
In the upcoming result, we reduce the system of n equations defining the k-
Euler-Lagrange additive and n—k-Jensen mapping to obtain a single functional

equation.

Proposition 3.2. Letn € N and k € {0,...,n}. If a mapping f : V" — W
is a k-Fuler-Lagrange additive and n — k-Jensen mapping, then f satisfies the

equation
Z Z f (%1, ..., By, x[lnfk] + qx[gnfk])
%jE{Bj,B;}qE{fl,l}"*k
je{l,....k}
k
(31) = 2n7kH(alj +a2j) Z f (xlll,...,mlkk,x[ln_k}) s
j=1 li,..,lke{1,2}

for all m[ln_k},x[zn_k] € V"=F where B; and B} are defined as in (2.5).

Proof. Since for k € {0,n} our assertion follows from Theorem 2.2 and Theorem
2.6, we can assume that k € {1,...,n —1}. For any zln=kl e V7=F  define the
mapping g,m-r : VE — W by gym-n (@) == f(zlF] 2l"=*]) for zl¥ € V&,
By assumption, g,i»-» is k-Euler-Lagrange additive, and hence Theorem 2.6
implies that

Z Grln—k] (%1,...,%[0
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k
H a'lj +a2] E gz["*k] (xl117"'7'rlkk)'

ll,...,lke{l,Q}
It now follows from the above equality that

Z f(th...,%ka[nfk])

B ; e{Bj,B_;.}
je{l

(3.2) H ai; + az;) Z f (3?1117 .. wlkk,x[n_k]) ,

J=1 l1,..., lpe{1,2}

for all z[*=* ¢ V=% Similar to the above, for any z[¥ € V*  consider the
mapping h,u : V?F — W defined via hyu (x"7F) = f(zl*] 2Pk for
z["=* € V"=F_ This mapping is n — k-Jensen, and hence Theorem 2.2 implies
that

(3.3) Z B (x[ln k] + gl [n— k]) — onkp (x[lnfk]),
ge{—-1,1}n—F

In—= k],x[g M ¢ yn—k_ By the definition of h,u, (3.3) is equivalent to

(3.4) 3 f(x[k]’x[l"*k]_’_qx[n k]) :Qn_kf( [, gl k])
ge{—-1,1}n—F

for all .23[1 M, [2n M e Y=k and z[F € V*. Plugging (3.2) into (3.4), we obtain

> S f (B a4 gl )

n—k
%je{BTB;}qE{—lJ}”

for all =

B II(QU‘+G%? > ) f(xhh~~,$ukJﬁ%%]+q$yiM)

Iyl €{1,2} ge{—1,1}7—*

k
n—k
= H a1]+a2j Z f(zllla"wxlkkax[l ])7

Iyl €{1,2}

which proves that f satisfies equation (3.1). O
Proposition 3.2 has a converse under some mild conditions as follows.

Proposition 3.3. If a mapping f : V" — W satisfies (3.1) and linear con-
dition in the first k variables, then it is a k-Euler-Lagrange additive and n — k-
Jensen mapping.

Proof. Putting x[n M= (0,...,0) in the left side of (3.1), we obtain

27 ST (B Bl )

%je{Bj,B;}
J€{1,....k}
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k
(35) = H ay; + a2] Z f (xlll, e J}lkk,l‘[ln_k]> s

15 ,.‘.7lk€{1,2}

for all J;[lnfk] € V" F, where Bj, Bj are defined in (2.5). By (3.5) and in view
of Theorem 2.6, we see that f is Euler-Lagrange additive in each of the k first
variables. Furthermore, by putting x[ - x[2k] in (3.1) and using hypothesis,

we get

k
H alj—f—agj Z f(,rl ’x[ln k]+q$[n k?])
j=1

ge{-1,1}nk

k
H ayj + ag;) 28 f (x[lk],m[ln_k])

for all :z:[lk] € V¥ and x[ln_k} € V"k and thus the proof is complete by Theorem

2.2. (]

4. Stability results

Let a,b € R\{0} be fixed with a + b # 0,%1. If we put a1; = a and azj = b
in (3.1) for all j € {1,...,k}, then this equation converts to the equation

Z Z f(%ﬁl,.. , B 2 - k]—l—qx[;*k])

t1,...tx€{(a,b),(b,a)} ge{—1,1}—k

(4.1) = 2kt Z f (531117 . ,xlkk7m[1n7k]) ,
l1,...,lke{1,2}
where m = a + b, %;a’b) = axy; + bxay, %;b’a) = bxy; + ax; and m[" -
(T ft1s- - Tin) € V' whereas i € {1,2} and j € {1,...,k}.
In this section, we prove the Gavruta and Hyers-Ulam stabilities of equation
(4.1) by the incoming fixed point theorem ([8, Theorem 1]) in Banach spaces.
Throughout, for two sets X and Y, we denote the set of all mappings from X

to Y by YX.

Theorem 4.1. Let Y be a Banach space, S be a nonempty set, j € N,
9i,--,9; : S — S and Ly,...,L; : § — Ry. Suppose that the hypothe-
ses

(H1) T :YS — Y is an operator satisfying the inequality

J

[T () - Z z) [IMgi(x)) = wlgs(@)ll, Apeys zes,
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(H2) A:RS — RS is an operator defined through

J

Ad(z) = Li(x)d(gi(z)) JeRf,z€S.
i=1

hold and a function § : S — Ry and a mapping ¢ : S — Y fulfill the
following two conditions:

ITé(@) = o)l < O(x), 6°(x):=) Af(x) <oo  (z€).
=0

Then, there exists a unique fized point i of T such that
[o(x) = ()| <0°(z)  (z€S).
Moreover, 1(x) = lim;_,o T'é(x) for all x € S.

Here and subsequently, for a mapping f : V* — W, we consider the
difference operator Df : V" x V" — W by

Diaf oy = Y (Bt sl gl )
t1,...,tn€{(a,b),(b,a)}

-k, k [n—k
—2"""m E f(xlll,...,a:lkk,xl )
Il €{1,2}

We recall the next lemma from [3] that is a fundamental tool in obtaining
the stability results. For convenience, given an m € N, we write S := {0, 1},
and S; stands for the set of all elements of S having exactly i zeros, i.e.,

Si {(s1,...,8q) € S:card{j: s; =0} =i}, i€{0,...,d}.
Lemma 4.2. Letd e N, € Ny and ¥ : S — R be a function. Then
d d d ‘
DD Dy =) Y @ =)
v=0w=0 sES,, tES, i=0 peS;

We have the next stability result for equation (4.1). Note that in this theo-
rem S stands for {0,1}" "% and S; C S for i € {0,...,n — k}.

Theorem 4.3. Let V' be a linear space and W be a Banach space. Suppose
that ¢ : V™ x V* — Ry is a mapping satisfying the relations

In—k
. 1 L
i (zkmk) 2 2. @-

=0 peS;
X ((mlx[lk] 7 2lmf[1"7k]) 7 (mlﬂc[f], 2lpx[2”7k])>

(4.2) ~ 0,
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for all x[lk]ax[zk] e V"™ and x[lnik],x[znik] e VnF and
1 n 1 In—k
[0} S R 2l -1 i
(4.3) X ¢ ((mlw[k], 2lpx["‘k]) : (mlx[k],lex["_k])) < oo,

for all x = (M, zl"=*) ¢ V™. Assume also f : V* — W is a mapping
satisfying the inequality

(4.4) HDf (x[lk]’ I[ln—k]’x[Qk]’I[Qn—k]) H -, (x[l’f],zg"—’ﬂ, xgk],xg"—M) |
for all m[lk]’xgk] € V"™ and x[lnik]vx[gnfk} € V=K. Then, there exists a solution
F: V" — W of (4.1) such that

(145) 1£(z) - F@)l < B(a),

for allx € V™. Moreover, if F has the linear condition in the first k variables,
then it is a unique k-Fuler-Lagrange additive and n — k-Jensen mapping.

Proof. Putting x[lk] = x[gk] =z € V¥ and x[lnfk] = xé"ik] = gkl ¢ Yok
in (4.4), we have

2k Z f (mx[k], 25x[”_k]) —2"m” f(z)
ses

for all z := (x[lk],x[l"_k ) = (zlfl 2[*=F) € V™ (and the rest of the proof if is

necessary). Thus,

< ¢(z,z),

1
< Gaw P2, 2).

(4.6) Hf(ﬂﬂ) — m Z f (mx[k], 2sx["_k])
seS

Set 0(x) := s p(z,x) and TO(x) := 5r—rr Doses f(mal®, 252" =k) where
0 € WV". Then, (4.6) can be rewritten as
[f(2) =Tf@)| <b(x)  (zeV")

Define An(z) = g7 > cgn(mal), 252"=H) for all n € RY". We now
see that A has the form presented in (H2) with & = V", g;(z) = gs(x) =
(ma®], 2s2[*=*) and L;(z) = 57— for all i and = € V™. Once more, for
each A\, u € WVY" we obtain

ITA(z) = Tl

ﬁ lz(”\ (mal¥), 252l 41) — (mw[’f]asx[n—k})} H

seS

1
< ok E Z H)\ (m:c[k], 25:17["7’“]) — I (mx[k], 25m[”7k]> H .
ses
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It follows the relation above that the hypothesis (H1) holds. An induction
argument on [ shows that for any [ € Ny and =z € V"

1 In—k
(@.7) Alo(z) = (W> S -1y 9< L[] ol pgln= k])_

=0 pES;

Fix an # € V™. It is convenient to adapt the convention that 0° = 1 and so
(4.7) is trivially valid for | = 0. Next, assume that (4.7) holds for a [ € Ny.
Applying Lemma 4.2 for d = n — k and 9(s) := 0 (m!Flzl* 20+1szn=kl) for
s € S, we obtain

AFO(z)
n—k
= AA0)() = 5= kmk ;)t; (8'6) (malt], 2tal"=H)
1 I+1n—k n—k
_ <2n_kmk Z Z(Ql 1w Z 9( 1,0k ol+1 gy ln k])

=0teS, w=0 SES,,

=0 w=0s€S,, teS,
k

I+1n—kn—k
- (pokn) "B 5 ot i)
) (21 —1)p (ml+1$[k]72l+1px[n—k]> _

Therefore, (4.7) holds for any [ € Ny and z € V™. It now follows from (4.3)
and (4.7) that all assumptions of Theorem 4.1 are fulfilled. Hence, there exists
a mapping F : V™ — W such that

Fla) = lim (T'f)(2) = 5 kZ]:(mxk] 2500H)  (zevn),

l—o00
and moreover (4.5) holds. We wish to show that

HD(Tlf) (:p[k],x[ k] x[zk],m[; k])H

1
In—k
< (2n kmk) Z

i= OpGS
a9 (. 2 ). (mlxga ).

for all z1,29 € V™ and | € Ny. We argue by induction on [. Clearly, (4.8) is
true for | =0 by (4.4). Assume that (4.8) is valid for an [ € Ny. Then

ot (ot oo k7))
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(mxl],2xn " mm[Qk]J;v[n k]) ‘
1 l+1 l
< <W> ZZ > (2
s€S i=0tesS;

X ((ml—&-lx[lk]’ 21+lstx[1n7k]) 7 <ml+1x[2k]7 2l+1stx[2nfk]))

= () STy

i=0 peS;
x o ((m el 2 pal M) (mt 1l 2 ) )

for all 21, 2 € v and 2" ™M 2" ¢ =k We note that the last equality
follows from Lemma 4.2 with d :=n — k and

b(s) = ¢ ((mzﬂx[lk],?lﬂsx[ln—k]) 7 (ml+lx[2k]’2l+lsx[2n—k])) 7 (s € S).
Taking I — oo in (4.8) and using (4.2), we have D}'(:c[lk], x[ln k], 1 [" k]) 0

[k
Ty
for all m[k] [2k] € V¥ and a:[lnfk],ménfk] € Vn=k_ Hence, (4.1) holds for F.

If F has the linear condition in the first k variables, then it is a k-Euler-
Lagrange additive and n — k-Jensen mapping by Proposition 3.3. Lastly, let
§: V™ — W be another Euler-Lagrange-Jensen mapping satisfying (4.1) and
(4.5). Fix z = (¥ z"=*) € V™ and j € N. By (4.3), we obtain

[F(z) = 3@

1y . , 1y , ,
_ H(W) F (mial¥) 27zl (W) § (mialt), 2ial)
n— m n— m

(M)J (H]—‘ (mjx[k]’gjx[n—k]) _f (mjx[k]’2jx[n_k])H
+ HS (mjx[k]72jx[n—k]> —f (mj$[k]72jx[n_k]> H)

J

In—k

< g 2 (3) 2 2@

=0 peS;

x(p((mlx[r],gpx["—k]) ( Lylk] glypln— k]))

Consequently, letting j — oo and using the fact that series (4.3) is convergent
for all x € V™ we have F(x) = §(z) for all z € V", and therefore the proof is
completed. (I

IN
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We recall that the binomial coefficient for all s,r € Ny with s > r is defined
and denoted by (‘:) = In the next corollary, we show that the func-

tional equation (4.1) is Hyers stable when ||Df(x[1n],x2 )|| is controlled by a

positive small real number 4.

r'(sS )

Corollary 4.4. Given § > 0. Let V be a normed space and W be a Banach
space. If f: V™" — W is a mapping satisfying the inequality

o7 (et =9 | <

for all ac[lk],xgk] e V™ and :r:[n k],x[znfk] € V" then there exists a unique
solution F : V" — W of (4. 1) such that
1F@) ~ F@I < oy
— 2n(mk — 1)’
forallz e V™.

Proof. Considering the constant function gp(x[lk], x[ln k], x[Q ], [ank]) = ¢ for all

:c[l ], x[zk] evnr, x[ln Kl x[Qn Kl € V"% and applying Theorem 4.3, we have

n In—Fk
D=3 () X L@
=0 i=0 peS;

) (( x[k],lex[”*kD , <ml:c[ I 2lpaln= k]))

= annk i <2n—}cmk>l§ ( 7; ) (2 = 1) x 1
]
m
0

ES
[~]e
7N
\&)
3
| =
Sar
"
DA
3
|
z

1=0
)
2n(mk —1)
for all z = (¥ zln=F) ¢ V., O

A special case of (4.1) is the following equation when k = n.
(4.9) Z f(BY,.. Bl =m" Z flzi1,- )
b1, tn€{(a,b),(ba)} lyedne{1,2}

Putting £ = n in Theorem 4.3, we obtain the below result on the Hyers
stability of multi-Euler-Lagrange additive equation (4.9).
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Corollary 4.5. Given § > 0. Let V' be a normed space and W be a Banach
space. If f: V™ — W is a mapping satisfying the inequality

> F(BY, Bl —m™ Y f(@n, )| <6

t1,...,tn€{(a,b),(b,a)} l1,..,l,e{1,2}
then there exists a solution A : V"™ — W of (4.9) such that
)

[ f(z) — A(z)]| < Tl = 1)

for all x € V™. In particular, if F has the linear condition in all variables,
then it is a unique multi-Euler-Lagrange additive.

Corollary 4.6. Let a > 0 with o # n. Let also V be a normed space and W
be a Banach space. Suppose that f : V" — W is a mapping satisfying the
inequality

Z f(%tll,...,%ff')—m” Z fxna, - Tin)

t1yeeestn€{(ab),(b,a)} Iyl €41,2}

1,
2

n
< ST g
i=1 j=1

Then, there exists a solution A: V™ — W of (4.9) such that

Ty 2= 171511 @<,
1f(z) = Alz)|| <
=Ty 2=t 121 o>,
for all z := m[ln] € V™. Furthermore, if F has the linear condition in all

variables, then it is a unique multi-Euler-Lagrange additive.

5. Non-stability example

In this section, we present a non-stability example for multiadditive map-
pings on R™. For doing this, we need the following result, indicated in [20, The-
orem 13.4.3].

Theorem 5.1. Let g : RP" — R be a continuous p-additive function. Then,
there exist constants cj,...;, €R, j1,...,5p = 1,..., N, such that

N N
g(.’El,...7£L'p) = E E lemjpxljl...l'pjp,

Jji=1 Jp=1

forall x; = (x41,...,x;8) andi=1,...,p.
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Remark 5.2. In the proof of Theorem 5.1 only the continuity of g with respect
to each variable separately was used. Therefore, the result is true if and only
if f is supposed separately continuous with respect to each variable. On the
other hand, in virtue of the proof of Theorem 5.1, if the continuity condition
of g is removed, then the theorem remains valid for a function g : Q7 — Q in
the case N = 1. We use this fact to make a non-stable example.

Note that for a = b = 1, every multi-Euler-Lagrange additive is multiadditive
and so two equations (1.3) and (4.9) coincide. We close the paper with a
counterexample such that the hypothesis a # n is necessary and can not be
removed in Corollary 4.6 for multiadditive mappings. Here, we remind the idea
of the proof idea is taken from [14].

Example 5.3. Let § > 0 and n € N. Put = %5 Define the function
1 Q" — Q through

Bl ) = nIl—y 7 for all r; with |r;| <1,
e I otherwise.

Moreover, define the function f: Q™" — Q via

el l !
Flr ) = 3 PELn 20 )
=0

Obviously, ¥ is bounded by u. Indeed, for each (rq,...,r,) € Q™, we have
l[f(r1,y .o yrn)] < 23—!”. Put z; = (241,...,%m), where ¢ € {1,2}. We claim
that

2 n
(5.1) IDf (z1,29)| <6 Y faigl™,

i=1 j=1
for all x1,zs € Q", where
Df (z1,22) = f(x1+22) = > f@i1e s 2in),
Jiseedn€{1,2}

in which z; = (z;1,...,2;,) € Q" with j € {1,2}. It is clear that (5.1) holds
for 1 = 29 = 0. Let z1, 20 € Q™ with

2 n
n 1
(5.2) ZZ |2 |* < o
i=1 j=1
Thus, there exists a positive integer N such that
1 & 1
(5-3) v < 2 2 [t < ooy
i=1 j=1

and hence |z;;|" < 21‘2:1 2?21 2| < 5ax. The last relation implies that
2Nzl < 1 for all @ € {1,2} and j € {1,...,n}. Therefore, 2V |z;;| <
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L If yi,y2 € {ay|i € {1,2}, 7 € {1,...,n}}, then 2V "y £ yo| < 1.
Since ¢ is multiadditive function on (—1,1)", D (2%172%2) = 0 for all
1€{0,1,2,...,N — 1}. We conclude from the last equality and (5.3) that
Df (2'z,,2'z < Dy (2l 2
IDf (22| _ 5 1Dy (2]
Diet Zj:l e =N 2" Zj:l e
- p(2" +1)
n 2 n n
=0 2 (+N) Zi:l 23:1 |51
n n - 1
< p2m(2 +n§:%j

=0
22n

7 —1
for all z1,z2 € Q™ and thus (5.1) is true when (5.2) happens. If

2 n 1
SN al > TR

i=1 j=1

<

= u(2" +1) 5,

then
Df (2'z,2! on
Dz Zj:l |2 |™ 2n -1
Therefore, f satisfies (5.1) for all 1,22 € Q™. Now, suppose the assertion is
false, there exist a number A € [0, 00) and a multiadditive function A : Q" —
@ such that

|f(r1a"'a7'n) 7"4(7'17"'37‘11)‘ S )‘Z ‘Tj|n7
j=1

for all (ry,...,7,) € Q™. Without loss of generality, one can take a number
b € [0,00) so that

AY st <o ] Il
j=1 j=1
Hence, |f(r1,...,mn) — A(r1,...,m0)| < bl_[?:1 |r;| for all (ri,...,m,) € Q™.

It follows now from Lemma 5.2 that there is a constant ¢ € R such that
A(ry, ... rn) = e[ rj for all (rq,...,7,) € Q" and therefore

(5.4 Fnee )l < el +0) TL Il

for all (r1,...,7,) € Q™. On the other hand, one can choose N € N such that
(N+1Dp > |c+b Ifr=(r,...,r,) € Q" such that r; € (0,5y) for all
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j€{1,...,n}, then 2!r; € (0,1) for all [ =0,1,..., N. Hence

j;i ¢)(2lr17"'72lr2) o jgé ﬂznlIIyzlrﬁ

|f(T17~-~7rn)|:: 2nl in
1=0 1=0
= (N+Du ][] Il > (el + o) I Irsl,
j=1 j=1

that leads us to a contradiction with (5.4).
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