DOI QR코드

DOI QR Code

TOEPLITZ DETERMINANTS FOR λ-PSEUDO-STARLIKE FUNCTIONS

  • Murat Caglar (Department of Mathematics Faculty of Science Erzurum Technical University) ;
  • Ismaila O. Ibrahim (Department of Physical Sciences Landmark University) ;
  • Timilehin Gideon Shaba (Department of Applied Mathematics Hanyang University) ;
  • Abbas Kareem Wanas (Department of Mathematics College of Science University of Al-Qadisiyah)
  • Received : 2022.08.19
  • Accepted : 2024.03.21
  • Published : 2024.07.31

Abstract

In this article, by making use of the λ-pseudo-starlike functions, we introduce a certain family of normalized analytic functions in the open unit disk U and we establish coefficient estimates for the first four determinants of the Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. Further, some known and new results which follow as special cases of our results are also mentioned.

Keywords

Acknowledgement

The authors would like to express their sincerest thanks to the referees for their valuable comments and various useful suggestions.

References

  1. M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2018), no. 2, 253-264. https://doi.org/10.1017/S0004972717001174
  2. K. O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal. 3 (2013), no. 2, 137-147. https://doi.org/10.7153/jca-03-12
  3. U. Grenander and G. Szego, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, 1958. https://doi.org/10.1525/9780520355408
  4. T. Janani and G. Murugusundaramoorthy, Zalcman functional for class of λ-pseudo starlike functions associated with sigmoid function, Bull. Transilv. Univ. Brasov Ser. III 11(60) (2018), no. 1, 77-84.
  5. G. Murugusundaramoorthy and T. Janani, Sigmoid function in the space of univalent λ-pseudo starlike functions, Internat. J. Pure Appl. Math. 101 (2015), no. 1, 33-41.
  6. C. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbucher, Band XXV, Vandenhoeck & Ruprecht, Gottingen, 1975.
  7. V. Radhika, J. M. Jahangiri, S. Sivasubramanian, and G. Murugusundaramoorthy, Toeplitz matrices whose elements are coefficients of Bazilevic functions, Open Math. 16 (2018), no. 1, 1161-1169. https://doi.org/10.1515/math-2018-0093
  8. V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy, and J. M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, J. Complex Anal. 2016, Art. ID 4960704, 4 pp. https://doi.org/10.1155/2016/4960704
  9. J. Soko l, G. Murugusundaramoorthy, and K. Vijaya, On λ-pseudo starlike functions associated with vertical strip domain, Asian-Eur. J. Math. 16 (2023), no. 8, Paper No. 2350135, 11 pp. https://doi.org/10.1142/S1793557123501358
  10. H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, and B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics 7 (2019), no. 181, 1-15. https://doi.org/10.3390/math7020181
  11. K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (2016), no. 3, 577-598. https://doi.org/10.1007/s10208-015-9254-z