과제정보
이 논문은 경희대 연구그룹육성 KHU-Fellowship 프로그램(GS-5-JO-NON-20222741)에 의하여 지원되었습니다.
참고문헌
- H.-h. Shi, Y. Xiao, S. Ferguson, X. Huang, N. Wang, and H.-x. Hao, Progress of crystallization in microfluidic devices, Lab Chip, 17, 2167-2185 (2017). https://doi.org/10.1039/C6LC01225F
- S. Zhang, C. J. J. Gerard, A. Ikni, G. Ferry, L. M. Vuillard, J. A. Boutin, N. Ferte, R. Grossier, N. Candoni, and S. Veesler, Microfluidic platform for optimization of crystallization conditions, J. Cryst. Growth, 472, 18-28 (2017). https://doi.org/10.1016/j.jcrysgro.2017.01.026
- F. Tajoli, N. Dengo, M. Mognato, P. Dolcet, G. Lucchini, A. Faresin, J.-D. Grunwaldt, X. Huang, D. Badocco, M. Maggini, C. Kubel, A. Speghini, T. Carofiglio, and S. Gross, Microfluidic crystallization of surfactant-free doped zinc sulfide nanoparticles for optical bioimaging applications, ACS Appl. Mater. Interfaces, 12, 44074-44087 (2020). https://doi.org/10.1021/acsami.0c13150
- N. Junius, S. Jaho, Y. Sallaz-Damaz, F. Borel, J.-B. Salmon, and M. Budayova-Spano, A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction, Lab Chip, 20, 296-310 (2020). https://doi.org/10.1039/C9LC00651F
- S. Vyawahare, A. D. Griffiths, and C. A. Merten, Miniaturization and parallelization of biological and chemical assays in microfluidic devices, Biol. Chem., 17, 1052-1065 (2010). https://doi.org/10.1016/j.chembiol.2010.09.007
- A. Feuerborn, A. Prastowo, P. R. Cook, and E. Walsh, Merging drops in a Teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening, Lab Chip, 15, 3766-3775 (2015). https://doi.org/10.1039/C5LC00726G
- H. V. Nguyen, V. M. Phan, and T. S. Seo, High-throughput centrifugal microfluidic platform for multiplex respiratory virus diagnostics, Sens. Actuators B: Chem., 399, 134771 (2024).
- M. D. Luque de Castro, and F. Priego-Capote, Ultrasound-assisted crystallization (sonocrystallization), Ultrason. Sonochem., 14, 717-724 (2007). https://doi.org/10.1016/j.ultsonch.2006.12.004
- K.-i. Yuyama, T. Sugiyama, and H. Masuhara, Laser trapping and crystallization dynamics of l-phenylalanine at solution surface, J. Phys. Chem. Lett., 4, 2436-2440 (2013). https://doi.org/10.1021/jz401122v
- J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, Microwave-induced low-temperature crystallization of amorphous silicon thin films, J. Appl. Phys., 82, 2918-2921 (1997). https://doi.org/10.1063/1.366125
- R. Kacker, P. M. Salvador, G. S. J. Sturm, G. D. Stefanidis, R. Lakerveld, Z. K. Nagy, and H. J. M. Kramer, Microwave assisted direct nucleation control for batch crystallization: Crystal size control with reduced batch time, Cryst. Growth Des., 16, 440-446 (2016). https://doi.org/10.1021/acs.cgd.5b01444
- M. Taleb, C. Didierjean, C. Jelsch, J. P. Mangeot, B. Capelle, and A. Aubry, Crystallization of proteins under an external electric field, J. Cryst. Growth, 200, 575-582 (1999). https://doi.org/10.1016/S0022-0248(98)01409-2
- M. Jiang, C. D. Papageorgiou, J. Waetzig, A. Hardy, M. Langston, and R. D. Braatz, Indirect ultrasonication in continuous slug-flow crystallization, Cryst. Growth Des., 15, 2486-2492 (2015). https://doi.org/10.1021/acs.cgd.5b00263
- D. Rossi, R. Jamshidi, N. Saffari, S. Kuhn, A. Gavriilidis, and L. Mazzei, Continuous-flow sonocrystallization in droplet-based microfluidics, Cryst. Growth Des., 15, 5519-5529 (2015). https://doi.org/10.1021/acs.cgd.5b01153
- F. Valoppi, A. Salmi, M. Ratilainen, T. Puranen, O. Tommiska, J. Hyvonen, J. Heikkila, and E. Haeggstrom, Ultrasonic standing wave chamber for engineering microstructures of water- and lipid-based materials, Eng. Res. Express, 3, 016002 (2021).
- Y. Hattoria, K. Kadotab, T. Yanoa, A. Shimosakaa, H. Ichikawac, Y. Fukumoric, Y. Shirakawaa, and J. Hidaka, Fabrication of composite particles through single pass using a coaxial tube reactor, Chem. Eng. Process.: Process Intensif., 97, 233-241 (2015). https://doi.org/10.1016/j.cep.2015.05.016
- Z. Ma, A. Pang, W. Li, Y. Qi, and L. Zhang, Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication, Chem. Eng. J., 405, 126516 (2021).
- X. He, R. Chen, X. Zhu, Q. Liao, and S. Li, Laser assisted microfluidic membrane evaporator for sample crystallization separation, Sep. Purif. Technol., 242, 116817 (2020).
- V. Korede, F. M. Penha, V. de Munck, L. Stam, T. Dubbelman, N. Nagalingam, M. Gutta, P. Cui, D. Irimia, A. E. D. M. van der Heijden, H. J. M. Kramer, and H. B. Eral, Design and validation of a droplet-based microfluidic system to study non-photochemical laser-induced nucleation of potassium chloride solutions, Cryst. Growth Des., 23, 6067-6080 (2023). https://doi.org/10.1021/acs.cgd.3c00591
- T. Hua, O. Gowayed, D. Grey-Stewart, B. A. Garetz, and R. L. Hartman, Microfluidic laser-induced nucleation of supersaturated aqueous KCl solutions, Cryst. Growth Des., 19, 3491-3497 (2019). https://doi.org/10.1021/acs.cgd.9b00362
- T. Hua, C. Valentin-Valentin, O. Gowayed, S. Lee, B. A. Garetz, and R. L. Hartman, Microfluidic laser-induced nucleation of supersaturated aqueous glycine solutions, Cryst. Growth Des., 20, 6502-6509 (2020). https://doi.org/10.1021/acs.cgd.0c00669
- X. Zhu, Q. Zhang, Y. Li, and H. Wang, Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation, J. Mater. Chem., 20, 1766-1771 (2010). https://doi.org/10.1039/b922873j
- D. Che, X. Zhu, P. Liu, Y. Duan, H. Wang, Q. Zhang, and Y. Li, A facile aqueous strategy for the synthesis of high-brightness LaPO4:Eu nanocrystals via controlling the nucleation and growth process, J. Lumines., 153, 369-374 (2014). https://doi.org/10.1016/j.jlumin.2014.03.028
- A. M. Alabanza, M. Mohammed, and K. Aslan, Crystallization of l-alanine in the presence of additives on a circular PMMA platform designed for metal-assisted and microwave-accelerated evaporative crystallization, CrystEngComm, 14, 8424-8431 (2012). https://doi.org/10.1039/c2ce26363g
- M. J. Lee, M. R. Abdul Hamid, J. Lee, J. S. Kim, Y. M. Lee, and H.-K. Jeong, Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation, J. Membr. Sci., 559, 28-34 (2018). https://doi.org/10.1016/j.memsci.2018.04.041
- A. Dastbaz, J. Karimi-Sabet, and M. A. Moosavian, Intensification of hydrogen adsorption by novel Cu-BDC@rGO composite material synthesized in a microwave-assisted circular micro-channel, Chem. Eng. Process.: Process Intensif., 135, 245-257 (2019). https://doi.org/10.1016/j.cep.2018.11.004
- F. Li and R. Lakerveld, Influence of alternating electric fields on protein crystallization in microfluidic devices with patterned electrodes in a parallel-plate configuration, Cryst. Growth Des., 17, 3062-3070 (2017). https://doi.org/10.1021/acs.cgd.6b01846
- F. Li and R. Lakerveld, Electric-field-assisted protein crystallization in continuous flow, Cryst. Growth Des., 18, 2964-2971 (2018). https://doi.org/10.1021/acs.cgd.8b00095
- M. Singh, O. K. Sarid, and Y. Tsori, Electric field assisted protein crystallization in a microfluidic device, SSRN (2023).
- S. Sui, Y. Wang, C. Dimitrakopoulos and S. L. Perry, A graphene-based microfluidic platform for electrocrystallization and in situ X-ray diffraction, Crystals, 8, 76 (2018).
- M. Torabinia, U. S. Dakarapu, P. Asgari, J. Jeon, and H. Moon, Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle, Sens. Actuators B: Chem., 330, 129252 (2021).