과제정보
The authors would like to thank the editor and the anonymous reviewers for their constructive comments and suggestions, which improved the quality of this paper.
참고문헌
- A.R. Alharbi, M.I. Faisal, F.A. Shah, M. Waseem, R. Ullah, and S. Sherbaz, Higher Order Numerical Approaches for Nonlinear Equations by Decomposition Technique, IEEE Access 7 (2019), 44329-44337. https://doi.org/10.1109/ACCESS.2019.2906470
- R.L. Burden, and J.D. Faires, Numerical Analysis, PWS Publishing Company, Boston, USA, 2001.
- C. Chun, On the construction of iterative methods with at least cubic convergence, Appl. Math. Comput. 189 (2007), 1384-1392. https://doi.org/10.1016/j.amc.2006.12.018
- C. Chun, Some variant of Chebyshev-Halley method free from second derivative, Appl. Math. Comput. 191 (2007), 193-198. https://doi.org/10.1016/j.amc.2007.02.078
- C. Chun, Y. Ham, and S.G. Lee, Some higher-order modifications of Newton's method for solving nonlinear equations, J. Comput. Appl. Math. 222 (2008), 477-486. https://doi.org/10.1016/j.cam.2007.11.018
- C. Chun and Y. Kim, Several new third-order iterative methods for solving nonlinear equations, Acta Appl. Math. 109 (2010), 1053-1063. https://doi.org/10.1007/s10440-008-9359-3
- Y. Ham and C. Chun, A fifth-order iterative method for solving nonlinear equations, Appl. Math. Comput. 194 (2007), 287-290. https://doi.org/10.1016/j.amc.2007.04.005
- J.H. He, Variational iteration method - a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (1999), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- J.H. He, Variational iteration method - some recent results and new interpretations, J. Comp. Appl. Math. 207 (2007), 3-17. https://doi.org/10.1016/j.cam.2006.07.009
- M. Inokuti, H. Sekine, and T. Takeuchi, General use of the Lagrange multiplier in nonlinear mathematical physics, J. Math. Phys. 19 (1978), 201-206.
- M. Javidi, Fourth-order and fifth-order iterative methods for nonlinear algebraic equations, Math. Comput. Model 50 (2009), 66-71. https://doi.org/10.1016/j.mcm.2009.02.004
- B. Jovanovic, A method for obtaining iterative formulas of higher order, Mat. Vesnik 9 (1972), 365-369.
- J. Kou and Y. Li, The improvements of Chebyshev-Halley methods with fifth-order convergence, Appl. Math. Comput. 188 (2007), 143-147.
- M.A. Noor, New classes of iterative methods for nonlinear equations, Appl. Math. Comput. 191 (2007), 128-131. https://doi.org/10.1016/j.amc.2007.02.098
- M.A. Noor and K.I. Noor, Predictor-corrector Halley method for nonlinear equations, Appl. Math. Comput. 188 (2007), 148-153. https://doi.org/10.1016/j.amc.2006.09.096
- M.A. Noor and F.A. Shah, Variational iteration technique for solving nonlinear equations, J. Appl. Math. Comput. 31 (2009), 247-254. https://doi.org/10.1007/s12190-008-0207-4
- M.A. Noor, F.A. Shah, and E. Al-Said, Variational iteration technique for finding multiple roots of nonlinear equations, Sci. Res. Essays 6 (2011), 1344-1350.
- M.A. Noor and F.A. Shah, A family of iterative schemes for finding zeros of nonlinear equations having unknown multiplicity, Appl. Math. Inf. Sci. 8 (2014), 2367-2373. https://doi.org/10.12785/amis/080532
- K. Nonlaopon, A generalized iterative scheme with computational results concerning the systems of linear equations, Num. Lin. Algebra Appl. 28 (2023), e2451.
- F.A. Shah, E.U. Haq, M.A. Noor, and M. Waseem, Some novel schemes by using multiplicative calculus for nonlinear equations, TWMS J. Appl. Eng. Math. 13 (2023), 723-733.
- F.A. Shah and M. Waseem, Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity, Examples and Counterexamples 6 (2024), 100150.
- J.F. Traub, Iterative Methods for Solution of Equations, Prentice Hall, Englewood Cliffs, NJ, 1964.
- M. Waseem, M.A. Noor, F.A. Shah, and K.I. Noor, An efficient technique to solve nonlinear equations using multiplicative calculus, Turkish Journal of Mathematics 42 (2018), 679-691. https://doi.org/10.3906/mat-1611-95
- S. Weerakoon, T.G.I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2