Acknowledgement
The authors would like to thank the editor and the anonymous reviewers for their constructive comments and suggestions, which improved the quality of this paper.
References
- O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: A survey, Heliyon 4 (2018), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
- G. Adomian, Solving frontier problems of physics: the decomposition method, Springer Science and Business Media, 60, 2013.
- A. Bermudez, M.R. Nogueiras, C. V'azquez, Numerical solution of variational inequalities for pricing Asian options by higher order Lagrange-Galerkin methods, Appl. Numer. Math. 56 (2006), 1256-1270. https://doi.org/10.1016/j.apnum.2006.03.026
- F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637-654.
- B. Bin-Mohsin, M.A. Noor, K.I. Noor, R. Latif, Resolvent dynamical systems and mixed variational inequalities, J. Nonl. Sci. Appl. 10 (2017), 2925-2933. https://doi.org/10.22436/jnsa.010.06.07
- R. Cavoretto, A. De Rossi, E. Perracchione, Optimal selection of local approximants in RBF-PU interpolation, J. Sci. Comput. 74 (2018), 1-22. https://doi.org/10.1007/s10915-017-0418-7
- M. Contreras, A. Llanquihu'en, M. Villena, On the solution of the multi-asset black-scholes model: Correlations, eigenvalues and geometry, (2015). arXiv preprint arXiv:1510.02768
- T. Corzo, M. Prat, E. Vaquero, Behavioral Finance in Joseph de la Vega's Confusion de Confusiones, J. Behav. Finance 15 (2014), 341-350. https://doi.org/10.1080/15427560.2014.968722
- C. de Lamare Bastian-Pinto, Modeling generic mean reversion processes with a symmetrical binomial lattice-applications to real options, Procedia Comput. Sci. 55 (2015), 764-773. https://doi.org/10.1016/j.procs.2015.07.160
- A.N. Fall, S.N. Ndiaye, N. Sene, Black-Scholes option pricing equations described by the Caputo generalized fractional derivative, Chaos Solitons Fractals 125 (2019), 108-118. https://doi.org/10.1016/j.chaos.2019.05.024
- J.-H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005), 207-208.
- M.S. Joshi, The concepts and practice of mathematical finance, Cambridge Univ. Press, 1 2003.
- J. Kim, T. Kim, J. Jo, Y. Choi, S. Lee, H. Hwang, M. Yoo, D. Jeong, A practical finite difference method for the three-dimensional Black-Scholes equation, Eur. J. Oper. Res. 252 (2016), 183-190. https://doi.org/10.1016/j.ejor.2015.12.012
- N. Khan, Q.M.U. Hassan, E.U. Haq, M.Y. Khan, K. Ayub, J. Ayub, Analytical technique with Lagrange multiplier for solving specific nonlinear differential equations, J. Sci. Arts 21 (2021), 5-14. https://doi.org/10.46939/J.Sci.Arts-21.1-a01
- M. Kadalbajoo, L.P. Tripathi, A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation, Math. Comput. Modelling 55 (2012), 1483-1505. https://doi.org/10.1016/j.mcm.2011.10.040
- M.N. Koleva, L.G. Vulkov, Numerical solution of time-fractional Black-Scholes equation, Comput. Appl. Math. 36 (2017), 1699-1715. https://doi.org/10.1007/s40314-016-0330-z
- D.C. Lesmana, S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs, Appl. Math. Comput. 219 (2013), 8811-8828.
- M.D. Marcozzi, S. Choi, C.S. Chen, On the use of boundary conditions for variational formulations arising in financial mathematics, Appl. Math. Comput. 124 (2001), 197-214.
- K. Nonlaopon, F.A. Shah, K. Ahmed, and G. Farid, A generalized iterative scheme with computational results concerning the systems of linear equations, AIMS Math. 8 (2023), 6504-6519.
- M.A. Noor and F.A. Shah, A family of iterative schemes for finding zeros of nonlinear equations, Appl. Math. Inf. Sci. 8 (2014), 2367-2373. https://doi.org/10.12785/amis/080532
- P. Pharochoo, A. Luadsong, N. Aschariyaphotha, A numerical study of the European option by the MLPG method with moving kriging interpolation, SpringerPlus 5 (2016), 1-14. https://doi.org/10.1186/s40064-015-1659-2
- K.R. Raslan, H.A. Baghdady, A Comparison between the Variational Iteration Method and Adomian Decomposition Method, Gen 20 (2014), 125-135.
- H. Rouhparvar, M. Salamatbakhsh, Analytical Solution Of The Black-Scholes Equation By Using Variational Iteration Method, Appl. Math. E-Notes 13 (2013), 243-
- P. Pharochoo, A. Luadsong, N. Aschariyaphotha, A numerical study of the European option by the MLPG method with moving kriging interpolation, SpringerPlus 5 (2016), 1-14. https://doi.org/10.1186/s40064-015-1659-2
- H. Rouhparvar, M. Salamatbakhsh, Analytical Solution Of The Black-Scholes Equation By Using Variational Iteration Method, Appl. Math. E-Notes 13 (2013), 243-256.
- A. Santos, P. de Carvalho, F. Silva, Analyzing the financial performance of Brazilian investment funds using decision trees and neural networks, Comput. Ind. Eng. 128 (2019), 570-580.
- F.A. Shah and M.A. Noor, Application of decomposition technique and efficient methods for the approximate solution of nonlinear equations, U.P.B. Sci. Bull. A, Series A 79 (2017), 171-180.
- F.A. Shah, M. Darus, I. Faisal, and M.A. Shafiq, Decomposition technique and a family of efficient schemes for nonlinear equations, Discrete Dynam. Nat. Sci. 2017 (2017), 3794357.
- F.A. Shah and M.A. Noor, Some numerical methods for solving nonlinear equations by using decomposition technique, Appl. Math. Comput. 251 (2015), 378-386.
- F.A. Shah and M.A. Noor, Higher order iterative schemes for nonlinear equations using decomposition technique, Appl. Math. Comput. 266 (2015), 414-423.
- F.A. Shah, M.A. Noor, and M. Waseem, Some Steffensen-type iterative schemes for the approximate solution of nonlinear equations, Miskolc Math. Notes 22 (2021), 939-949. https://doi.org/10.18514/MMN.2021.2787
- F.A. Shah, E.U. Haq, M.A. Noor, and M. Waseem, Some novel schemes by using multiplicative calculus for nonlinear equations, TWMS J. Appl. Eng. Math. 13 (2023), 723-733.
- F.A. Shah, M.A. Noor, Variational iteration technique and some methods for the approximate solution of nonlinear equations, Appl. Math. Inf. Sci. Lett. 3 (2009), 85-93.
- F.A. Shah, M.A. Noor, Variational iteration technique for solving nonlinear equations, J. Appl. Math. Comput. 31 (2009), 247-254. https://doi.org/10.1007/s12190-008-0207-4
- F.A. Shah and M. Waseem, Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity, Examples and Counterexamples 6 (2024), 100150.
- R. Singh, M. Kumar, Application of Adomian Decomposition Method for Solving Black-Scholes Equation, J. Comput. Math. 35 (2016), 112-126.
- E. Tuncer, A. Yildirim, Solution of the Black-Scholes partial differential equation using the Modified Variational Iteration Method, Appl. Math. Comput. 236 (2014), 53-63.
- J. Wang, Q. Wang, L. Liu, Numerical solutions of the Black-Scholes model with varying parameters, Comput. Math. Appl. 64 (2012), 293-307.
- A.-M. Wazwaz, A comparison between the variational iteration method and Adomian decomposition method, Journal of Computational and Applied Mathematics 207 (2007), 129-136. https://doi.org/10.1016/j.cam.2006.07.018
- T. Zamir, F.A. Shah, M. Shoaib, and A. Ullah, Design of intelligent computing networks for a two-phase fluid flow with dusty particles hanging above a stretched cylinder, Computers and Concrete 32 (2023), 399-410. https://doi.org/10.12989/CAC.2023.32.4.399
- Y. Zhang, X. Zhao, C. Zhang, A computational approach for the Black-Scholes equation using RBF interpolation, Appl. Math. Comput. 271 (2016), 305-318.
- A. Zulfiqar, J. Ahmad, Q.M.U. Hassan, Analytical study of fractional Newell-Whitehead-Segel equation using an efficient method, J. Sci. Arts 19 (2019), 839-850.