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Abstract. This article offers a thorough exploration of a modified Black-

Scholes model featuring two assets. The determination of option prices is
accomplished through the Black-Scholes partial differential equation, lever-

aging the variational iteration method. This approach represents a semi-
analytical technique that incorporates the use of Lagrange multipliers. The

Lagrange multiplier emerges as a beacon of efficiency, adeptly streamlining

the computational intricacies, and elevating the model’s efficacy to un-
precedented heights. For better understanding of the presented system, a

graphical and tabular interpretation is presented with the help of Maple

software.
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1. Introduction

The Variational Iteration Method (VIM) stands as a potent analytical tool,
adept at tackling differential equations, particularly those entrenched in non-
linearity, defying resolution through conventional means. Originating in 1979
by Nayfeh and Mook, its initial concepts have since undergone refinement and
expansion under the scrutiny of numerous researchers. Here’s a breakdown of
its operation: Commencing with an initial approximation of the solution, VIM
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hinges on a guess that aligns with the boundary or initial conditions of the prob-
lem at hand. Subsequent to this, an iterative process ensues, wherein successive
corrections refine the initial approximation, aiming for a more precise solution.
These corrections pivot around a correction functional, often dubbed the La-
grange multiplier, adjusted iteratively to diminish the residual error between
the differential equation and its approximated counterpart. Central to VIM is
the adoption of a variational principle akin to those seen in the calculus of varia-
tions. This principle orchestrates the minimization of a functional, symbolizing
the deviation between the approximate and true solutions of the differential
equation. The iterative journey persists until the desired accuracy threshold
is met or convergence criteria are satisfied. Techniques such as the homotopy
perturbation method or Adomian decomposition method may be enlisted to ex-
pedite convergence. Upon convergence, the obtained solution undergoes scrutiny
through substitution into the original differential equation, ensuring compliance
within the specified tolerance. VIM’s forte lies in its adaptability across a broad
spectrum of differential equations [25], encompassing nonlinear, fractional, and
partial varieties. However, its efficacy heavily relies on the judicious selection of
the initial guess and the apt formulation of the correction functional. Despite its
prowess, VIM may falter in certain scenarios, particularly when grappling with
highly nonlinear or singular equations. In such instances, alternative method-
ologies or modifications to the VIM approach may be imperative. Moreover, the
computational overhead can be substantial, particularly for intricate problems
necessitating numerous iterations for convergence. Effective applications of VIM
can be seen in [20, 33, 34]

The Black Scholes model was suggested by Fischer Black and Myron Sc-
holes [4] in 1973 to examine the nature of option pricing in a market. Several
mathematical models related to Black-Scholes equation have been developed
[3, 5, 6]. Mostly contain five important components: underlying security stock
price, strike price, risk-free rate, maturity period and volatility. A derivative is a
financial instrument that guarantees payment at a future date and whose payout
amount is determined by the movement of an underlying asset. It’s value can
be generated from a variety of underlying assets, including stocks, bonds, inter-
est rates, commodities, currencies, and so on. Options are, without any doubt,
the most important component of a financial derivative. The primary based
on the evidence of the Netherlands’ active participation in option trading, the
initial research was proposed by Corzo [8]. Implying the drift of an arithmetic
Brownian motion, In [6] presented an option pricing formula for implementation.
Black Scholes model in financial market has gained significant intension in present
time. In this regard, numerous analytic and numeric path have been examined
and suggested. In the sense of analytic purposes He [11] employs the homotopy
perturbation technique. The same is true for numerical solutions while Kim [13]
, Koleva [16], Lesmana [17] and Marcozzi [18] employ the finite element tech-
nique, whereas Phaochoo [24] employs the finite difference method for finding
numerical solution. Furthermore, the radial basis function partition of unity
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technique (RBF-PUM) which is extensively used to approximate the partial dif-
ferential equation issue, is one of the approaches for solving the Black-Scholes
equations in also applied.
The two assets Black Scholes model for option pricing may be stated as follows
in general
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with the terminal condition

C(S1, S2, T ) = max{
2∑

i=1

βiSi −K, 0}

where as K = max{K1,K2}, and the boundary conditions:

C(S1, S2, τ) = 0 for (S1, S2) → 0,

C(S1, S2, τ) =

2∑
i=1

βiSi −Ke−r(T−τ) for S1 → ∞ or S2 → ∞

where
βi is a coefficient that ensures that all hazardous asset prices are equal,
C is a call option that is based on the underlying stock values S1, S2 at a given
time.
ρij is the connection between the prices of the ith and jth underlying stocks,
qi is the dividend yield on the ith underlying stock,
r is the risk-free interest rate until it reaches the end of the period,
σi is the ith underlying stock’s volatility,
T is the date of expiry,
Ki is the strike price of the underlying stock.

The majority of existing models include tight assumptions, such as ideal mar-
kets, volatility and risk-free rate with constant values, no dividends, continuous
delta hedging and log-normal distribution of share price dynamics to name a
few. The representation of a divisible number of shares is insufficient a market
reality. The purpose of this work is to investigate the afore mentioned Black
Scholes model using variational iteration method(VIM) [14, 22, 39, 42]. This
technique is semi analytical and give outcome in series form. The suggestion
of Lagrange Multiplier play very important role in the implementation of this
technique. At the end tabular results are given to show the efficiency of these
techniques. Similarly the graphical results are plotted for different values of
parameters involve in Black Scholes model.
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Many specialists and scholars employ stochastic numerical approaches because
of their usability and worth. Falkner–skan model [14] is also an example of
contemporary stochastic solvers that demonstrate their use.

2. Mathematical Formulation

For an European-style option, consider the two assets Black Scholes equation
with efficient perfect liquidity, markets, and no dividends during the option’s
life. We make the assumption that σ1, σ2, ρ and r are constants.
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the terminal conditions are

c(S1, S2, τ) = max{β1S1 + β2S2 −K, 0}

boundary conditions are

c(S1, S2, τ) = 0 for (S1, S2) → 0,

c(S1, S2, τ) = β1S1 + β2S2 −Ke−r(T−τ) for S1 → ∞ or S2 → ∞

By alternation in variables[7]
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By changing again of variables, we define

c(x, y, τ) = e−r(T−τ)v(x, y, τ)

uaing c(x, y, τ) in equation (2),then obtain
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Now we use
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3. Analysis of Methods

3.1. Variational iteration method.
The Variational iteration method is very useful and efficiently technique for
either linear or nonlinear ordinary differential equation (ODEs) and partial dif-
ferential equation (PDEs). Unlike adomian decomposition method (ADM) [2],
these methods deals with nonlinear terms in the same manner as it deals with
linear terms in the same steps. So, it is considered more capable method than
ADM to handle nonlinear problems.
The general form of differential equation is

L(v) +N(v) = g(x)

In this equation L, N are linear and nonlinear operator correspondingly, where
the non homogeneous function is g(x). The correction functional method for
VIM is defined as

vn+1(x) = vn(x) +

∫ t

0

λ(Lvn(t) +Nũn(t)− g(t))dt

Where as λ is a langrange multiplier and ṽn is restricted variation such that
(δ̃n) = 0
In this method, v0 can be selected from the given initial guess. The final solution
is obtained by:

v(x) = lim
n→∞

vn

3.2. Solution Procedure by VIM.
First we will solve the Black Scholes model by using VIM. We rewrite the Black
Scholes equation as follows.

∂v

∂t
− 1

2
σ2
1

∂2v

∂x2
− 1

2
σ2
2

∂2v

∂y2
− ρσ1σ2

∂2v

∂x∂y
= 0 (6)

The initial condition is

v(x, y, 0) = max{β1e
x+Tr− 1

2σ
2
1 + β2e

y+Tr− 1
2σ

2
2 −K, 0}

Now we construct correctional functional for eq (4) as given
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Where as the general lagrange multiplier is λ. Where the approximate value of
λ = −1.
The correctional functional for eq(10) is
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Where the initial guess is
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Now for n=0 we have
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The final form of solution can be written as
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Table 4.1. Values of parameters of the numerical solution.

Parameters Value
β1 2
β2 1
strike price, K (dollars) 40
maturity rate, T (years) 1
risk-free intrest rate (per year), r 5 percent
the underlying first assets’ volatility (per year), σ1 10 percent
the underlying second assets’ volatility (per year), σ2 20 percent
correlation, ρ 0.5
τ 0.1
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Table 4.2

t Exact VIM Error
0.0 22.00900775 22.00900774 0.00000001
0.1 22.04775701 22.04775701 0.00000000
0.2 22.08654114 22.08654113 0.00000001
0.3 22.12536019 22.12536019 0.00000000
0.4 22.16421422 22.16421421 0.00000001
0.5 22.20310325 22.203103255 0.00000000
0.6 22.24202735 22.24202733 0.00000002
0.7 22.28098656 22.28098654 0.00000002
0.8 22.31998091 22.31998091 0.00000000
0.9 22.35901049 22.35901048 0.00000001
1 22.39807534 22.39807533 0.00000001

In Table 4.2, the comparison of VIM with exact solution is given for several
values of time. It can easily observe that the proposed technique gives accurate
results. This shows that these techniques are very useful and efficient for the
application of such type of problems.
In Figure 1, the option price v with respect to asset x is plotted for different
values of time. By using VIM it is clearly seen that both techniques gives similar
result. It is noted that the option prices v surge after x=3.9589 over a range of
x from 2 to 6. Similarly in figure 7 the result of v is plotted for the asset y. It
is noted that the option prices v soar after y=4.1371 over a range of y from 2 to
6.

Figure 1. The effect of different values of time on option
price w.r.t asset price x
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Figure 2. The effect of different values of time on option
price w.r.t asset price y

In Figure 2, it is noted that with increase in volatility rate σ1 the option price
increases rapidly with the passage of time. Higher the volatility rate the option
price increases more rapidly.

Figure 3. The influence of volatility rates on the option price
w.r.t time

In Figure 4, the volatility rate σ2 varies. Similarly here the option price v
increases with the increase in volatility. But the increase in option price is less
than as compare to Figure 3.
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Figure 4. The influence of volatility rates on the option price
w.r.t time

In Figure 5, the option price v is figurized over a range of 0 ≤ x ≤ 6 and
0 ≤ y ≤ 6 surrounding at the strike price. The outcomes depict rise when the
stock prices growth. By setting y = 3.4589, the solution v is plotted in Figure
5. With the increasing x the option price reached to zero with the increase of x
from 0 to 3. Similarily for x > 3 the option price rise exponentially.

Figure 5. Transformed explicit solution v at a day before an
expiration date.
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Figure 6. Transformed explicit solution v at a day before an
expiration date.

Figure 6, depict the surface plot of call option with x = 4.2452 over a range
of stock price 0 ≤ y ≤ 6 and time 0 ≤ t ≤ 1. As y increases from 0 to 1.8
the option price is still touches to zero. Then the option price suddenly rise for
y > 3. Figure 7, depict the surface plot of call option with x = 4.2452 over a

Figure 7. Transformed explicit solution v at a day before an
expiration date.

range of stock price 0 ≤ y ≤ 6 and time 0 ≤ t ≤ 1. As y increases from 0 to 1.8
the option price is still touches to zero. Then the option price suddenly rise for
y > 3.



The dynamics of European-style option pricing in the financial market utilizing ... 151

4. Conclusion

The Black Scholes model with two assets is modified version of classical Black
Scholes model using for determining the option prices. In this present study an-
alytical technique variational iteration method(VIM) is used to find the series
solution by using Maple. The Black-Scholes model stands as a cornerstone in
finance and investment for several compelling reasons. It furnishes a mathe-
matical framework for appraising options, financial instruments conferring the
right, yet not the obligation, to buy or sell an underlying asset at a predeter-
mined price within a specified timeframe. Through precise option pricing, in-
vestors gain the necessary insights to navigate their investment decisions adeptly,
thereby enhancing risk management and optimizing returns within their portfo-
lios. Options, pivotal in risk mitigation strategies for both investors and financial
institutions, find accurate valuation through the Black-Scholes model, enabling
hedging against adverse price fluctuations in the underlying assets. Moreover,
the model’s influence extends to fostering the creation of diverse financial prod-
ucts and investment tactics. Undoubtedly, the Black-Scholes model retains its
pivotal status in financial theory and practice, offering invaluable perspectives
on option pricing, risk management, and the dynamics of financial markets. De-
spite its inherent limitations and assumptions, it continues to shape investors’
perceptions and strategies in the intricate realm of derivatives and securities
trading.
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