Acknowledgement
본 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 지역지능화혁신인재양성사업임(IITP-2024-2020-0-01489).
References
- H. Sim, S. Choi, and H. Kim, "Algorithm Improvement Through AI-Based Casting Process Parameter Optimization," Journal of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 3, June 2023, pp. 441-448. http://dx.doi.org/10.13067/JKIECS.2023.18.6.1321
- H. Sim and H. Kim, "Development of AI-based Smart Agriculture Early Warning System," Journal of the Korea Society of Computer and Information, vol. 28, no. 12, Dec. 2023, pp. 67-77. https://doi.org/10.9708/JKSCI.2023.28.12.067
- L. Garcia, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, "IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture," Sensors, vol. 20, no. 4, Feb. 2020, pp. 1042.
- R. Dagar, S. Som, and S. K. Khatri, "Smart Farming-IoT in Agriculture," in Proc. 2018 Int. Conf. Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2018, pp. 1052-1056.
- R. K. Jha, S. Kumar, K. Joshi, and R. Pandey, "Field monitoring using IoT in agriculture," in Proc. 2017 Int. Conf. Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 2017, pp. 1417-1420.
- D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli, "IoT agriculture system based on LoRaWAN," in Proc. 2018 14th IEEE Int. Workshop Factory Communication Systems (WFCS), Imperia, Italy, 2018, pp. 1-4.
- I. Mat, M. R. M. Kassim, A. N. Harun, and I. M. Yusoff, "IoT in Precision Agriculture applications using Wireless Moisture Sensor Network," in Proc. 2016 IEEE Conf. Open Systems (ICOS), Langkawi, Malaysia, 2016, pp. 24-29.
- T. Baranwal, Nitika, and P. K. Pateriya, "Development of IoT based smart security and monitoring devices for agriculture," in Proc. 2016 6th Int. Conf. Cloud System and Big Data Engineering (Confluence), Noida, India, 2016, pp. 597-602.
- A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep Learning for Computer Vision: A Brief Review," Comput. Intell. Neurosci., vol. 2018, June 2018, pp. 7068349.
- H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, "Computer vision technology in agricultural automation -A review," Inf. Process. Agric., vol. 7, no. 1, Mar. 2020, pp. 1-19. https://doi.org/10.1016/j.inpa.2019.09.006
- D. I. Patricio and R. Rieder, "Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review," Comput. Electron. Agric., vol. 153, Nov. 2018, pp. 69-81. https://doi.org/10.1016/j.compag.2018.08.001
- P. Kaur, S. Harnal, R. Tiwari, S. Upadhyay, S. Bhatia, A. Mashat, and A. Alabdali, "Recognition of Leaf Disease Using Hybrid Convolutional Neural Network by Applying Feature Reduction," Sensors, vol. 22, no. 2, Jan. 2022, pp. 575.
- S. S. Patil and S. A. Thorat, "Early detection of grapes diseases using machine learning and IoT," in Proc. 2016 Second Int. Conf. Cognitive Computing and Information Processing (CCIP), Mysuru, India, 2016, pp. 604-609.
- P. Karczmarek, A. Kiersztyn, and W. Pedrycz, "Fuzzy Set-Based Isolation Forest," in Proc. 2020 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 2020, pp. 1-6.