D.E.Cho : A Study on Smart City Data Security Model Using Blockchain Technology

블록체인 기술을 이용한 스마트시티 데이터 보안 모델 연구

  • 조도은 (목원대학교 SW 교양학부)
  • Received : 2024.03.30
  • Accepted : 2024.04.19
  • Published : 2024.04.30

Abstract

Smart cities are the product of modern urban planning that seeks to innovate information and communication technology and improve the quality of urban life. For the efficient operation of smart cities, data collected, stored, and processed in real time is a key resource. Therefore, data from smart cities collected in various fields must be managed safely, and personal information protection is paramount. In this study, a smart city data security model using blockchain technology was proposed to safely manage smart city data. The proposed model integrates IPFS into the blockchain network to distribute and store data to ensure data confidentiality and integrity, and encrypts data using CP-ABE to efficiently control access to data from users. In addition, privacy was guaranteed while enhancing the usability of data by using Homomorphic Encryption with data access control policies.

스마트 시티는 정보통신기술의 혁신과 도시 생활의 질 향상을 추구하는 현대 도시 계획의 산물이다. 스마트 시티의 효율적인 운영을 위해서는 실시간 수집되고 저장 및 처리되는 데이터가 핵심자원이다. 따라서 다양한 분야에서 수집되는 스마트 시티의 데이터는 안전하게 관리되어야 하며, 개인정보보호가 무엇보다 중요하다. 본 연구에서는 스마트 시티의 데이터를 안전하게 관리하기 위하여 블록체인 기술을 이용한 스마트 시티 데이터 보안 모델을 제안하였다. 제안 모델은 블록체인 네트워크에 IPFS를 통합하여 데이터를 분산 저장함으로써 데이터의 기밀성과 무결성을 확보하고, CP-ABE를 이용하여 데이터를 암호화하여 사용자로부터 데이터의 접근제어가 효율적으로 수행되도록 하였다. 또한 데이터 접근 제어 정책과 동형 암호를 사용함으로써 데이터의 활용성을 강화하면서 프라이버시를 보장하도록 하였다.

Keywords

References

  1. S. Chatterjee, A. K. Kar, Y. K. Dwivedi, and H. Kizgin, H, "Prevention of cybercrimes in smart cities of India: from a citizen's perspective," Information Technology & People, Vol. 32, No. 5, pp. 1153-1183, 2019. https://doi.org/10.1108/ITP-05-2018-0251
  2. A. S. Elmaghraby and M. M. Losavio, "Cyber security challenges in Smart Cities: Safety, security and privacy," Journal of Advanced Research, Vol. 5, No. 4, pp. 491-497, 2014. https://doi.org/10.1016/j. jare.2014.02.006.
  3. A. Angelogianni, I. Politis, and C. Xenakis, "How many FIDO protocols are needed? Surveying the design, security and market perspectives," arXiv preprint, 2021. Available: https://arxiv.org/abs/2107.00577 107.00577
  4. NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 4, Security and Privacy Version 3," National Institute of Standards and Technology, 2019. https://doi.org/10.6028/NIST.SP.1500-4r2
  5. Z. Xihua and S. Goyal, "Security and privacy challenges using IoT-blockchain technology in a smart city: critical analysis," Int. J. Electr. Electron. Res, Vol. 10, No. 2, pp. 190-195, 2022. https://doi.org/10.37391/ijeer.100224
  6. M. A. Lopez, "Self-Sovereign Identity: The Future of Identity: Self-Sovereignty, Digital Wallets, and Blockchain," IDB, 2021. http://dx.doi.org/10.18235/0002635
  7. M. Swan, Blockchain: Blueprint for a New Economy, O'Reilly Media, Inc, 2015.
  8. G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," Ethereum project yellow paper, Vol. 151, No. 2014, pp. 1-32, 2014.
  9. D. H. Sin & J. H. Lee, "Smart contract security for Pin Tech," KIPS Review, Vol. 22, No. 5, pp.54-62, 2015.
  10. S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. N. Lee, "Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract," IEEE Access, 2021. doi: 10.1109/ACCESS.2021.3140091.
  11. https://www.mdpi.com/2071-1050/11/24/7054
  12. A. Rajalakshmi, K. V. Lakshmy, M. Sindu, and P. P. Amritha, "A Blockchain and IPFS based framework for secure research record keeping," International Journal of Pure and Applied Mathematics, Vol. 119, No. 15, pp. 1437-1442, 2018.
  13. I. Permatasari, M. Essaid, H. Kim, and H. Ju, "Blockchain implementation to verify archives integrity on cilegon E-archive," Applied Sciences, Vol. 10, No. 7, 2621, 2020. http://doi.org/10.3390.app1007261 https://doi.org/10.3390.app1007261
  14. J. Sun, X. Yao, S. Wang, and Y. Wu, "Blockchain-based secure storage and access scheme for electronic medical records in IPFS," IEEE access, Vol. 8, pp. 59389-59401, 2020. https://doi.org/10.1109/ACCESS.2020.2982964
  15. T. Nishide, K. Yoneyama, and K. Ohta, "Attribute-based encryption with partially hidden encryptor-specified access structures," in Applied Crypytography and Network Security, Springer, pp. 111-129, 2008.
  16. A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, "A. Trustworthy users: Using IOTA and IPFS for attribute validation in CP-ABE and dCP-ABE schemes," Smart Cities, Vol.6, No.2, pp. 913-928, 2023. https://doi.org/10.3390/smartcities6020044