DOI QR코드

DOI QR Code

전해연마된 SLM 기반 316L Steel의 질량 손실 및 표면 피복 특성 연구

Mass Loss and Surface Passivation Characteristics of Electropolished SLM 316L Steel

  • ;
  • 안동규 (조선대학교 기계공학과) ;
  • 이정원 (조선대학교 기계공학과)
  • Jothi Prakash Chakrapani Gunarasan ;
  • Dong-Gyu Ahn ;
  • Jeong-Won Lee (Chosun University)
  • 투고 : 2024.07.11
  • 심사 : 2024.07.23
  • 발행 : 2024.08.01

초록

Utilization of additively manufactured parts in intended applications is limited by surface roughness. Roughness reduction in internal surface area of AM parts is exponentially more challenging. Reported methodologies for roughness reduction, result in material loss and limits the operational life of these parts. Herein, we explored electropolishing to reduce surface roughness of SLM manufactured 316L steel. Furthermore, the mass loss incurred during electropolishing is deduced as a function of polishing time. The change in roughness, wettability and surface passivation were studied and discussed in detail.

키워드

과제정보

This research is supported through National Research Foundation of Korea (NRF), grant funded by Korea government (MIST) (No. RS-2023-00219369) and (No. RS-2023-00277993).

참고문헌

  1. X. Cui, S. Zhang, C. Wang, C. H. Zhang, J. Chen, J. B. Zhang, 2020, Microstructure and Fatigue Behavior of a Laser Additive Manufactured 12CrNi2 Low Alloy Steel, Mater. Sci. Eng. A. Vol. 772, pp. 138685. https://doi.org/10.1016/j.msea.2019.138685 
  2. X. Z. Ran, D. Liu, J. Li, H. M. Wang, X. Cheng, J. K. Zhang, H. B. Tang, X. Liu, 2018, Effects of Microstructures on The Fatigue Crack Growth Behavior of Laser Additive Manufactured Ultrahigh-Strength AerMet100 Steel, Mater. Sci. Eng. A. Vol. 721, pp. 251-262. https://doi.org/10.1016/j.msea.2018.02.088 
  3. J. R. Scully, N. Birbilis, 2018, Corrosion of Additively Manufactured Alloys: A Review, Vol. 74, pp. 1318-1350. https://doi.org/10.5006/2926 
  4. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, C. Emmelmann, 2014, Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue properties, Phys. Proc. Vol. 56, pp. 371-378. https://doi.org/10.1016/j.phpro.2014.08.120 
  5. F. Nazneen, P. Galvin, D. W. M. Arrigan, 2012, Electropolishing of Medical-Grade Stainless Steel in Preparation for Surface Nano-Texturing, J. Solid State Electrochem. Vol. 16, pp. 1389-1397. https://doi.org/10.1007/s10008-011-1539-9 
  6. Z. Rahman, K. M. Deen, L. Cano, W. Haider, 2017, The Effects of Parametric Changes in Electropolishing Process on Surface Properties of 316L Stainless Steel, Appl. Surf. Sci. Vol. 410, pp 432-444. 10.1016/j.apsusc.2017.03.081 
  7. V. Urlea, V. Brailovski, 2017, Electropolishing and Electropolishing-Related Allowances for IN625 Alloy Components Fabricated by Laser Powder-Bed Fusion, Int. J. Adv. Manuf. Technol., Vol. 92, pp. 4487-4499. https://doi.org/10.1007/s00170-017-0546-0 
  8. S. Inayoshi, Y. Sato, K. Saito, S. Tsukahara, Y. Hara, S. Amano, K. Ishizawa,T. Nomura, A. Shimada, M. Kanazawa, 1999, Chemical polishing of stainless steel for Ultrahigh vacuum wall material, Vacuum, Vol. 53, pp. 325-328. https://doi.org/10.1016/S0042-207X(98)00422-9 
  9. T. Hryniewicz, K. Rokosz, R. Rokicki, 2008, Electrochemical and XPS Studies of AISI 316L Stainless Steel After Electropolishing in a Magnetic Field, Corrosion Sci. Vol. 50, pp. 2676-2681. https://doi.org/10.1016/j.corsci.2008.06.048 
  10. S. Habibzadeh, L. Li, D. Shum-Tim, E.C. Davis, S. Omanovic, 2014, Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method:Towards The Improvement of Biocompatibility, Corrosion Sci. Vol. 87, pp. 89-100. https://doi.org/10.1016/j.corsci.2014.06.010 
  11. H. Zhao, J. Van Humbeeck, J. Sohier, I. De Scheerder, 2002, Electrochemical Polishing of 316L Stainless Steel Slotted Tube Coronary Stents, J. Mater. Sci. Mater. Mater. Med. Vol. 13, pp 911-916. https://doi.org/10.1023/A:1019831808503 
  12. D. Landolt, 1987, Fundamental Aspects of Electropolishing, Elecetrochimica Acta, Vol. 32, pp 1-11. https://doi.org/10.1016/0013-4686(87)87001-9 
  13. C. -C. Lin, C. -C. Hu, 2008, Electropolishing of 304 Stainless Steel: Surface Roughness Control Using Experimental Design Strategies and a Summarized Electropolishing Model, Electrochim. Acta. Vol. 53, pp. 3356-3363. https://doi.org/10.1016/j.electacta.2007.11.075 
  14. D. Brent, T. A. Saunders, F. G. Moreno, and P. Tyagi, "Taguchi, 2016, Design of Experiment for The Optimization of Electrochemical Polishing of Metal Additive Manufacturing Components," in ASME 2016 International Mechanical Engineering Congress and Exposition, pp. V002T02A014-V002T02A014. https://doi.org/10.1115/IMECE2016-67492 
  15. T. J. Gorey, J. A. Stull, R. E. Hackenberg, C. L. Clark, D. E. Hooks, 2023, Enhancing Surface Finish of Additively Manufactured 316L Stainless Steel with Pulse/Pulse Reverse Electropolishing. JOM, Vol. 75, pp. 195-208. https://doi.org/10.1007/s11837-022-05558-9 
  16. D. Ahmadkhaniha, H. Moller, C. Zanella, 2021, Studying the Microstructural Effect of Selective Laser Melting and Electropolishing on the Performance of Maraging Steel, J. of Materi. Eng. and Perform., Vol. 30, pp. 6588-6605. https://doi.org/10.1007/s11665-021-05927-6 
  17. W. Han, F. Fang, 2021, Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion, Front. Mech. Eng., Vol. 16, pp. 580-592. https://doi.org/10.1007/s11465-021-0633-7 
  18. O. Adegoke, J. Andersson, H. Brodin, R. Pederson, P. Harlin, 2022, Influence of Laser Powder Bed Fusion Process Parameters on The Microstructure and Cracking Susceptibility of Nickel-based Superalloy Alloy 247LC, Vol. 13, pp. 100256. https://doi.org/10.1016/j.rinma.2022.100256 
  19. Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, Andre A. N. Nemeth, D. G. McCartney, R. C. Reed, 2021, Alloys-by-Design: Application to New Superalloys for Additive Manufacturing, Vol. 202, pp. 417-436. https://doi.org/10.1016/j.actamat.2020.09.023 
  20. P. Tyagi, D. Brent, T. Saunders, T. Goulet, C. Riso, K. Klein, F. G. Moreno, 2020, Roughness Reduction of Additively Manufactured Steel by Electropolishing, Int J Adv Manuf Technol, Vol. 106, pp. 1337-1344. https://doi.org/10.1007/s00170-019-04720-z 
  21. T. Hryniewicz, K. Rokosz, 2010, Analysis of XPS Results of AISI 316L SS Electropolished and Magnetoelectropolished at Varying Conditions, Surf. Coat. Tech. Vol. 204, pp. 2583-2592. https://doi.org/10.1016/j.surfcoat.2010.02.005 
  22. K. Rokosz, J. Lahtinen, T. Hryniewicz, S. Rzadkiewicz, 2015, XPS Depth Profiling Analysis of Passive Surface Layers Formed on Austenitic AISI 304L and AISI 316L SS After High-Current-Density Electropolishing, Surf. Coat. Techno. Vol. 276, pp. 516-520. https://doi.org/10.1016/j.surfcoat.2015.06.022 
  23. G. T. Burstein, P. C. Pistorius, 1995, Surface Roughness and The Metastable Pitting of Stainless Steel in Chloride Solutions, Corrosion, Vol. 51, pp. 380-385. https://doi.org/10.5006/1.3293603 
  24. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Barmeld, C. R. Hutchinson, 2017, On the Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc. Vol. 164, pp. C250. 10.1149/2.0551706jes 
  25. I. Bosing, J. Thoming, M. Baune, 2017, Electrolyte Composition for Distinguishing Corrosion Mechanism in Steel Alloy Screening, International Journal of Corrosion, Vol. 2017, pp. 9425864. https://doi.org/10.1155/2017/9425864 
  26. Z. W. Xu, A. Liu, X. S. Wang, 2019, The Influence of Building Direction on The Fatigue Crack Propagation Behavior of Ti6Al4V Alloy Produced by Selective Laser Melting, , Mater. Sci. Eng. A., Vol. 767, pp. 138409. https://doi.org/10.1016/j.msea.2019.138409 
  27. Y. Zheng, K. Zhang, T. T. Liu, W. H. Liao, C. D. Zhang, H. Shao, 2019, Cracks of Alumina Ceramics By Selective Laser Melting, Ceramics International, Vol. 45, pp. 175-184. https://doi.org/10.1016/j.ceramint.2018.09.149