DOI QR코드

DOI QR Code

Antioxidant Activity, Total Phenolic Content, Total Flavonoid Content, and Total Anthocyanin Content of Vaccinium oldhamii Miq. Collected from 11 Regions of South Korea

  • Da Hyun Lee (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Jun Hyeok Kim (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Chung Youl Park (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kyeong Min Kim (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Hyeon Min Kim (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Un Seup Shin (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Do Hyun Kim (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Chae Sun Na (Forest Bioresource Deparment, Baekdudaegan National Arboretum) ;
  • Wan Geun Park (Division of Forest Science, Kangwon National University)
  • Received : 2023.11.03
  • Accepted : 2024.02.14
  • Published : 2024.06.01

Abstract

We studied antioxidant activities of Vaccinium oldhamii Miq. from 11 regions in South Korea and blueberries, domestically produced and imported. Correlation analysis between V. oldhamii habitats, environmental factors, and antioxidant properties was conducted. DPPH RC50 values ranged from 220.44 to 902.38㎍/mL, ABTS from 524.29 to 1230.97 ㎍/mL, and FRAP from 1783.71 to 2235.78 ㎛ Fe (II)/g. V. oldhamii from Gumi showed highest DPPH activity, Taean and Haenam for ABTS, and Gimcheon for FRAP. V. oldhamii exhibited superior antioxidant activities compared to blueberries. Meteorological conditions correlated positively with ABTS and DPPH activities, negatively with wind speed and humidity affecting DPPH and phenolic, flavonoid, and anthocyanin contents. Based on these findings, it is suggested that V. oldhamii fruits collected from Gimcheon and Gumi regions can be effectively utilized as natural antioxidants derived from plant materials.

Keywords

Acknowledgement

This study was conducted with the support of the Korea Forest Service (Korea Forest Research Institute) under the Forestry Science and Technology Development Project (Project Number 2021400B10-2425-CA02).

References

  1. Amarowicz, R. and B. Raab. 1997. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Zeitschrift fur Naturforschung C. 52(9-10):709-712. https://doi.org/10.1515/znc-1997-9-1022
  2. An, Y.H., I.S. Lee and H.S. Kim. 2015. Quality characteristics of Sikhye made with berries. Korean J. Food Cook Sci. 27:803-814. https://doi.org/10.9724/kfcs.2011.27.6.803
  3. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199-1200. https://doi.org/10.1038/1811199a0
  4. Chae, J.W. 2021. Study on forest stand structure of distribution area and biological activity of Vaccinium oldhamii Miq. Department of Forestry, Ph.D. Thesis, Kyungpook National University, Korea.
  5. Christ, B. and K. Muller. 1960. Zur serienmassigen bestimmung des gehaltes an flavonol-derivaten in drogen. Archiv der Pharmazie 293(12):1033-1042. https://doi.org/10.1002/ardp.19602931202
  6. Chung, Y.H. and J.O. Hyun. 1989. Monographic study of the endemic plants in Korea 11. Taxonomy and interspecific relationships of the genus Vaccinium. Korean J. Environ. Biol. 7(1): 1-17.
  7. Crop Wild Relatives. www.cwrdiversity.org (accessed on 15, Sep 2023).
  8. Fang, Y.Z., S. Yang and G. Wu. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18(10):872-879. https://doi.org/10.1016/S0899-9007(02)00916-4
  9. Gololo, S.S. 2018. Potential adverse effects of alteration of phytochemical accumulation in fruits and vegetables. In Phytochemistry: Source and Antioxidant Role in Disease Prevention.
  10. Gowri, S. and K. Vasantha. 2010. Free radical scavenging and antioxidant activity of leaves from Agathi (Sesbania grandiflora)(L.) Pers. Am. Eurasian J. Sci. Res. 5(2):114-119.
  11. Kim, H.N., J.K. Baek, S.B. Park, J.D. Kim, H.J. Son, G.H. Park, H.J. Eo, J.H. Park, H.S. Jung and J.B. Jeong. 2019. Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-κB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264. 7 cells. BMC Complement. Altern. Med. 19(1):1-14. https://doi.org/10.1186/s12906-018-2420-5
  12. Kim, H.S., M.S. Kim, S.H. Yun, K.W. and J.H. Song. 2013. Analysis of total phenolic content and antioxidant activity of Vaccinium oldhamii Miq. fruit. J. Korean For. Soc. 102(4):566-570. https://doi.org/10.14578/jkfs.2013.102.4.566
  13. Kim, H.S., U. Lee, J.H. Song, K.W. Yun, S.H. Kim and M.S. Kim. 2016. Variation of phenolics contents and antioxidant activity of Vaccinium oldhamii Miq. J. Korean For. Soc. 105(2):208-215. https://doi.org/10.14578/jkfs.2016.105.2.208
  14. Lee, J., R.W. Durst and R.E. Wrolstad. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88(5):1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
  15. Lee, K.J., G.H. Kim, G.A. Lee, J.R. Lee, G.T. Cho, K.H. Ma and S. Lee. 2021. Antioxidant activities and total phenolic contents of three legumes. Korean J. Plant Res. 34(6):527-535. https://doi.org/10.7732/KJPR.2021.34.6.527
  16. Lee, K.J., H.M. Seo, S.A. Lee, J.H. Kim and H.L. Kim. 2023. Antioxidant activity, total polyphenol content, and total flavonoid content of Boehmeria nivea var. tenacissima (Gaudich.) Miq. collected from six regions. Korean J. Plant Res. 36(1):1-14. https://doi.org/10.7732/KJPR.2023.36.1.001
  17. Martineau, L.C., A. Couture, D. Spoor, A. Benhaddou-Andaloussi, C. Harris, B. Meddah, C. Leduc, A. Burt, T. Vuong and P.M. Le. 2006. Anti-diabetic properties of the canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13(9-10):612-623. https://doi.org/10.1016/j.phymed.2006.08.005
  18. Miller, N.J., C. Rice-Evans, M.J. Davies, V. Gopinathan and A. Milner. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84(4):407-412. https://doi.org/10.1042/cs0840407
  19. Molina-Diaz, A., I. Ortega-Carmona and M. Pascual-Reguera. 1998. Indirect spectrophotometric determination of ascorbic acid with ferrozine by flow-injection analysis. Talanta 47(3):531-536. https://doi.org/10.1016/S0039-9140(98)00085-X
  20. Papandreou, M.A., A. Dimakopoulou, Z.I. Linardaki, P. Cordopatis, D. Klimis-Zacas, M. Margarity and F.N. Lamari. 2009. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav. Brain Res. 198(2):352-358. https://doi.org/10.1016/j.bbr.2008.11.013
  21. Park, H.E. and D.G. Kim. 2005. Tannin components from the twigs of Vaccinium oldhamii Miquel. Korean J. Pharmacogn. 36(3):191-194.
  22. Plants of the World Online. Available online: www.powo. science.kew.org (accessed on 15, Sep 2023).
  23. Seeram, N.P., L.S. Adams, Y. Zhang, R. Lee, D. Sand, H.S. Scheuller and D. Heber. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 54(25): 9329-9339. https://doi.org/10.1021/jf061750g
  24. Sekizawa, H., K. Ikuta, K. Mizuta, S. Takechi and T. Suzutani. (2013). Relationship between polyphenol content and anti-influenza viral effects of berries. J. Sci. Food Agric. 93(9):2239-2241. https://doi.org/10.1002/jsfa.6031
  25. Sellappan, S., C.C. Akoh and G. Krewer. 2002. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 50(8):2432-2438. https://doi.org/10.1021/jf011097r
  26. Singleton, V.L., R. Orthofer and R.M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  27. Tanaka, H., F.A. Dinenno, K.D. Monahan, C.M. Clevenger, C.A. DeSouza and D.R. Seals. 2000. Aging, habitual exercise, and dynamic arterial compliance. Circulation 102(11):1270-1275. https://doi.org/10.1161/01.CIR.102.11.1270
  28. Tsuda, H., H. Kunitake, R. Kawasaki-Takaki, K. Nishiyama, M. Yamasaki, H. Komatsu and C. Yukizaki. 2013. Antioxidant activities and anti-cancer cell proliferation properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and blueberry cultivars. Plants 2(1):57-71. https://doi.org/10.3390/plants2010057
  29. Wiseman, H. 1996. Dietary influences on membrane function: importance in protection against oxidative damage and disease. The J. Nutr. Biochem. 7(1):2-15. https://doi.org/10.1016/0955-2863(95)00152-2