DOI QR코드

DOI QR Code

관측 기반 지상 대기오염물질 농도와 대기혼합고의 변동성 및 상관관계 분석

Analysis of the Variability and Correlation between Ground-Level Air Pollutant Concentrations and Atmospheric Mixing Layer Height based on Observations

  • 김현경 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공) ;
  • 정희정 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공) ;
  • 박정민 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 신혜정 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 이그림 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 이규영 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 김해리 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 엄준식 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공)
  • Hyunkyoung Kim (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Heejung Jung (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Jung Min Park (National Institute of Environmental Research, Climate and Air Quality Research Department, Air Quality Research Division) ;
  • Hyejung Shin (National Institute of Environmental Research, Climate and Air Quality Research Department, Air Quality Research Division) ;
  • Greem Lee (National Institute of Environmental Research, Climate and Air Quality Research Department, Air Quality Research Division) ;
  • Gyu-Young Lee (National Institute of Environmental Research, Climate and Air Quality Research Department, Air Quality Research Division) ;
  • HaeRi Kim (National Institute of Environmental Research, Climate and Air Quality Research Department, Air Quality Research Division) ;
  • Junshik Um (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
  • 투고 : 2024.06.25
  • 심사 : 2024.07.02
  • 발행 : 2024.08.31

초록

This study analyzed the variability and correlation between ground-level air pollutant concentrations and the atmospheric mixing layer height using data from four types of air pollutants (PM2.5, PM10, NO2, and O3) collected at AirKorea monitoring stations nationwide over a five-year period (2018~2022), and aerosol backscatter data observed by the Vaisala CL31 to derive atmospheric mixing layer heights. The five-year trends and variability of ground-level air pollutant concentrations under seasonal and hourly conditions were examined, as well as the seasonal distribution and diurnal variation of the atmospheric mixing layer height. Five correlation coefficient methodologies were applied to analyze the correlations between ground-level air pollutants and atmospheric mixing layer height under various seasonal and hourly conditions, confirming the dilution effect of the atmospheric mixing layer height. The results showed that PM2.5, PM10, and NO2 generally had negative correlations with the atmospheric mixing layer height, while O3 showed a strong positive correlation up to an altitude of 1,200~1,500 meters, and a negative correlation beyond that altitude. It was also shown that a single high concentration event (e.g., PM10) can alter the overall correlation. The correlation can also vary depending on the characteristics of the correlation coefficient methodology, highlighting the importance of applying the appropriate methodology for each case during the analysis process.

키워드

과제정보

이 연구는 국립환경과학원 연구용역사업의 지원을 받아 수행된 연구임(NIER-2021-03-03-001, 권역별대기환경연구소 운영). 이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1013278). 이 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2020R1A6A1A03044834).

참고문헌

  1. Albertin, S., J. Savarino, S. Bekki, A. Barbero, R. Grilli, Q. Fournier, I. Ventrillard, N. Caillon, and K. Law, 2024: Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: Implications for tracing N Ox oxidation pathways and emission sources. Atmos. Chem. Phys., 24, 1361-1388, doi:10.5194/acp-24-1361-2024.
  2. Bae, M., S. Kim, and S. Kim, 2022: Quantitative evaluation on the drivers of PM2.5 concentration change in South Korea during the 1st - 3rd seasonal PM2.5 management periods. J. Korean Soc. Atmos. Environ., 38, 610-623, doi:10.5572/KOSAE.2022.38.4.610.
  3. Caicedo, V., B. Rappengluck, B. Lefer, G. Morris, D. Toledo, and R. Delgado, 2017: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech., 10, 1609-1622, doi:10.5194/amt10-1609-2017.
  4. Cao, Y., X. Zhao, D. Su, X. Cheng, and H. Ren, 2023: A machine-learning-based classification method for meteorological conditions of ozone pollution. Aerosol Air Qual. Res., 23, 220239, doi:10.4209/aaqr.220239.
  5. Choe, J.-I., and Y. S. Lee, 2015: A study on the impact of PM2.5 emissions on respiratory diseases. J. Environ. Policy Adm., 23, 155-172, doi:10.15301/jepa.2015.23.4.155.
  6. Choi, J. K., I. S. Choi, K. K. Cho, and S. H. Lee, 2020: Harmfulness of particulate matter in disease progression. J. Life Sci., 30, 191-201, doi:10.5352/JLS.2020.30.2.191.
  7. Emeis, S., C. Jahn, C. Munkel, C. Munsterer, and K. Schafer, 2007: Multiple atmospheric layering and mixinglayer height in the Inn valley observed by remote sensing. Meteorol. Z., 16, 415-424, doi:10.1127/0941-2948/2007/0203.
  8. Emeis, S., K. Schafer, and C. Munkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteor. Z., 18, 149-154, doi:10.1127/0941-2948/2009/0365.
  9. Eresmaa, N., A. Karppinen, S. M. Joffre, J. Rasanen, and H. Talvitie, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 1485-1493, doi:10.5194/acp-6-1485-2006.
  10. Geiss, A., M. Wiegner, B. Bonn, K. Schafer, R. Forkel, E. von Schneidemesser, C. Munkel, K. L. Chan, and R. Nothard, 2017: Mixing layer height as an indicator for urban air quality?. Atmos. Meas. Tech., 10, 2969-2988, doi:10.5194/amt-10-2969-2017.
  11. Han, M., H. Koo, K. Lee, and S. Yoon, 2020: Analysis of ozone concentration in the Korean Peninsula using nonstationary generalized extreme value distribution. J. Korean Data Anal. Soc., 22, 1325-1334, doi:10.37727/jkdas.2020.22.4.1325.
  12. Han, S., and J. Um, 2023: Scavenging efficiency based on long-term characteristics of precipitation and particulate matters in Seoul, Korea. Atmosphere, 33, 367-385, doi:10.14191/Atmos.2023.33.4.367.
  13. Hong, S.-O., and S.-K. Song, 2022: Analysis of long-term variation trends of ozone in the past 20 years and recent high concentration cases on Jeju Island. J. Korean Soc. Atmos. Environ., 38, 138-158, doi:10.5572/KOSAE.2022.38.1.138.
  14. Jee, J.-B., C.-R. Cho, Y.-J. Kim, and S.-S. Park, 2022: Analysis of meteorological characteristics by fine dust classification on the Korean peninsula, 2015-2021. Atmosphere, 32, 119-133, doi:10.14191/Atmos.2022.32.2.119.
  15. Jeong, J. I., R. J. Park, C.-K. Song, S.-W. Yeh, and J.-H. Woo, 2024: Quantitative analysis of winter PM2.5 reduction in South Korea, 2019/20 to 2021/22: contributions of meteorology and emissions. Sci. Total Environ., 907, 168179, doi:10.1016/j.scitotenv.2023.168179.
  16. Ju, J.-T., S.-J. Lee, J. H. Choi, S. T. Kim, I. H. Song, H.-J. Jung, H. J. Shin, J. M. Park, and S.-D. Choi, 2023: Identification of pollution characteristics of PM2.5 using a geographic information system and statistical tools: a case study of the southeastern and southern regions of South Korea. J. Korean Soc. Atmos. Environ., 39, 478-491, doi:10.5572/KOSAE.2023.39.4.478.
  17. Jung, H., and J. Um, 2022: Calculations of surface PM2.5 concentrations using data from ceilometer backscatters and meteorological variables. J. Environ. Sci. Int., 31, 61-76, doi:10.5322/JESI.2022.31.1.61.
  18. Kang, Y.-H., Y.-K. Kim, M.-K. Hwang, J.-H. Jeong, H. Kim, and M.-S. Kang, 2019: Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area. J. Environ. Sci. Int., 28, 169-182, doi:10.5322/JESI.2019.28.2.169.
  19. Kim, D.-S., J. Jeong, and J. Ahn, 2016: Characteristics in atmospheric chemistry between NO, NO2 and O3 at an urban site during MAPS (Megacity Air Pollution Study)-Seoul, Korea. J. Korean Soc. Atmos. Environ., 32, 422-434, doi:10.5572/kosae.2016.32.4.422.
  20. Kim, H., J. Gil, M. Lee, J. Jung, A. Whitehill, J. Szykman, G. Lee, D.-S. Kim, S. Cho, and J.-Y. Ahn, 2020: Factors controlling surface ozone in the Seoul Metropolitan Area during the KORUS-AQ campaign. Elem. Sci. Anth., 8, 46, doi:10.1525/elementa.444.
  21. Kim, S.-U., and K.-Y. Kim, 2020: Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea. Sci. Total Environ., 712, 136429, doi:10.1016/j.scitotenv.2019.136429.
  22. Kim, S. T., M. Bae, E. Kim, K. Son, Y.-H. Kang, Y. Kim, S. You, B.-U. Kim, and H. C. Kim, 2021: Identifying the drivers of PM2.5 concentration changes between December 2019 and December 2020 in South Korea. J. Korean Soc. Atmos. Environ., 37, 371-387, doi:10.5572/KOSAE.2021.37.3.371.
  23. Kotthaus, S., and C. S. B. Grimmond, 2018: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: a new method to track mixed layer height and classify clouds. Quart. J. Roy. Meteor. Soc., 144, 1525-1538, doi:10.1002/qj.3299.
  24. Lee, H. K., E. L. Choi, H. J. Lee, S. Y. Lee, and J. Y. Lee, 2020: A study on the seasonal correlation between O3 and PM2.5 in Seoul in 2017. J. Korean Soc. Atmos. Environ., 36, 533-542, doi:10.5572/KOSAE.2020.36.4.533.
  25. Lee, J., W. S. Ha, Y.-H. Kim, and K. H. Lee, 2018: Interactive 3D visualization of ceilometer data. J. Korea Comput. Graph. Soc., 24, 21-28, doi:10.15701/kcgs.2018.24.2.21.
  26. Lee, J., J.-W. Hong, K. Lee, J. Hong, E. Velasco, Y. J. Lim, J. B. Lee, K. Nam, and J. Park, 2019: Ceilometer monitoring of boundary-layer height and its application in evaluating the dilution effect on air pollution. Bound.-Layer Meteor., 172, 435-455, doi:10.1007/s10546-019-00452-5.
  27. Li, D., Y. Wu, B. Gross, and F. Moshary, 2021: Capabilities of an automatic lidar ceilometer to retrieve aerosol characteristics within the planetary boundary layer. Remote Sens., 13, 3626, doi:10.3390/rs13183626.
  28. Lim, H.-J., and Y.-J. Lee, 2011: Characterization of ozone distributions in Pohang: measurement data during 2002-2006. J. Korean Soc. Atmos. Environ., 27, 50-62, doi:10.5572/KOSAE.2011.27.1.050.
  29. Ma, X., W. Jiang, H. Li, Y. Ma, S. Jin, B. Liu, and W. Gong, 2021: Variations in nocturnal residual layer height and its effects on surface PM2.5 over Wuhan, China. Remote Sens., 13, 4717, doi:10.3390/rs13224717.
  30. Murthy, B. S., R. Latha, A. Tiwari, A. Rathod, S. Singh, and G. Beig, 2020: Impact of mixing layer height on air quality in winter. J. Atmos. Sol.-Terr. Phys., 197, 105157, doi:10.1016/j.jastp.2019.105157.
  31. Nam, K.-P., D.-G. Lee, and L.-S. Jang, 2019: Analysis of PM2.5 concentration and contribution characteristics in South Korea according to seasonal weather patterns in East Asia: focusing on the intensive measurement periods in 2015. J. Environ. Impact Assess., 28, 183-200, doi:10.14249/eia.2019.28.3.183.
  32. Nam, T.-C., and Coauthors, 2023: A study on the characteristics of PM2.5 and estimation of source identification in Jeollabuk-do: focused on Iksan City. J. Korean Soc. Atmos. Environ., 39, 985-1006, doi:10.5572/kosae.2023.39.6.985.
  33. Nguyen, D.-H., D. Stefanik, T. Sediva, and C. Lin, 2023: Properties of the mixing layer height retrieved from ceilometer measurements in Slovakia and its relationship to the air pollutant concentrations. Environ. Sci. Pollut. Res. Int., 30, 115666-115682, doi:10.1007/s11356-023-30489-6.
  34. NIER, 2023: Annual report of air quality in Korea, 2022. National Institute of Environmental Research, 403 pp.
  35. Roy, S., P. Gupta, and T. N. Singh, 2012: Studies on meteorological parameters and mixing height in gold mining area. Resour. Environ., 2, 228-239, doi:10.5923/j.re.20120205.06.
  36. Schafer, K., S. Emeis, H. Hoffmann, and C. Jahn, 2006: Influence of mixing layer height upon air pollution in urban and sub-urban areas. Meteor. Z, 15, 647-658, doi:10.1127/0941-2948/2006/0164.
  37. Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001-1027, doi:10.1016/S1352-2310(99)00349-0.
  38. Seo, J., D. Youn, J. Y. Kim, and H. Lee, 2014: Extensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999~2010. Atmos. Chem. Phys., 14, 6395-6415, doi:10.5194/acp-14-6395-2014.
  39. Shin, H. J., K. M. Cho, J. S. Han, J. S. Kim, and Y. P. Kim, 2012: The effects of precursor emission and background concentration changes on the surface ozone concentration over Korea. Aerosol Air Qual. Res., 12, 93-103, doi:10.4209/aaqr.2011.09.0141.
  40. Solanki, R., R. Macatangay, V. Sakulsupich, T. Sonkaew, and P. S. Mahapatra, 2019: Mixing layer height retrievals from miniMPL measurements in the Chiang Mai valley: implications for particulate matter pollution. Front. Earth Sci., 7, 308, doi:10.3389/feart.2019.00308.
  41. Stull, R. B., 1988: An introduction to boundary layer meteorology. Roland B. Stull, Springer Dordrecht, 670 pp.
  42. Sturges, H. A., 1926: The choice of a class interval. J. Am. Stat. Assoc., 21, 65-66.
  43. Su, T., Z. Li, and R. Kahn, 2018: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors. Atmos. Chem. Phys., 18, 15921-15935, doi:10.5194/acp-18-15921-2018.
  44. Tang, G., and Coauthors, 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459-2475, doi:10.5194/acp16-2459-2016.
  45. Wagner, P., and W. Kuttler, 2014: Biogenic and anthropogenic isoprene in the near-surface urban atmosphere-A case study in Essen, Germany. Sci. Total Environ., 475, 104-115, doi:10.1016/j.scitotenv.2013.12.026.
  46. Wagner, P., and K. Schafer, 2017: Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Climate, 22, 64-79, doi:10.1016/j.uclim.2015.11.001.
  47. Wang, C., M. Jia, H. Xia, Y. Wu, T. Wei, X. Shang, C. Yang, X. Xue, and X. Dou, 2019: Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmos. Meas. Tech., 12, 3303-3315, doi:10.5194/amt-12-3303-2019.
  48. Wang, J., J. Gao, F. Che, X. Yang, Y. Yang, L. Liu, Y. Xiang, and H. Li, 2023: Summertime response of ozone and fine particulate matter to mixing layer meteorology over the North China plain. Atmos. Chem. Phys., 23, 14715-14733, doi:10.5194/acp-23-14715-2023.
  49. Wang, N., and Coauthors, 2021: Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: two different responsive mechanisms to emission reductions in China. Environ. Sci. Technol., 55, 5721-5730, doi:10.1021/acs.est.0c08383.
  50. Wiegner, M., F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiss, G. Pappalardo, K. Schafer, and W. Thomas, 2014: What is the benefit of ceilometers for aerosol remote sensing? An answer from EAR-LINET. Atmos. Meas. Tech., 7, 1979-1997, doi:10.5194/amt-7-1979-2014.
  51. Wisthaler, A., and C. J. Weschler, 2010: Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc. Natl. Acad. Sci., 107, 6568-6575, doi:10.1073/pnas.0904498106.
  52. Yeo, M. J., and Y. P. Kim, 2019: Trends of the PM10 concentrations and high PM10 concentration cases in Korea. J. Korean Soc. Atmos. Environ., 35, 249-264, doi:10.5572/KOSAE.2019.35.2.249.
  53. Zhai, S., and Coauthors, 2021: Control of particulate nitrate air pollution in China. Nat. Geosci., 14, 389-395, doi:10.1038/s41561-021-00726-z.
  54. Zhao, W., and Coauthors, 2019: Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain. J. Environ. Sci., 83, 152-160, doi:10.1016/j.jes.2019.02.016.
  55. Zhu, X., and Coauthors, 2018: The spatial representativeness of mixing layer height observations in the North China Plain. Atmos. Res., 209, 204-211, doi:10.1016/j.atmosres.2018.03.019.