DOI QR코드

DOI QR Code

기후변화에 따른 미래 항공기 운영 환경 변화

The Impact of Climate Change on Future Aircraft Operation

  • 박수연 (공군 기상단) ;
  • 박상환 (공군 기상단) ;
  • 이건희 (공군 기상단) ;
  • 정혜정 (공군 기상단) ;
  • 강경민 (공군 기상단) ;
  • 김공요 (공군 기상단) ;
  • 황재돈 (공군 기상단) ;
  • 김성 ((주) 위즈아이)
  • Su-Yeon Park (Republic of Korea Air Force Weather Group) ;
  • Sang-Hwan Park (Republic of Korea Air Force Weather Group) ;
  • Keon-Hee Lee (Republic of Korea Air Force Weather Group) ;
  • Hye-Jeong Jung (Republic of Korea Air Force Weather Group) ;
  • Gyeong-Min Kang (Republic of Korea Air Force Weather Group) ;
  • Gong-Yo Kim (Republic of Korea Air Force Weather Group) ;
  • Jae-Don Hwang (Republic of Korea Air Force Weather Group) ;
  • Sung Kim (Wizai)
  • 투고 : 2024.06.14
  • 심사 : 2024.07.18
  • 발행 : 2024.08.31

초록

Analyzing the information about climate change on Korean Peninsula is essential for the national defense. In this study, we used HadGEM3-RA model output (a member of CORDEX-EA) and analyzed the 3 operational weather factors (VMC, runway temperature, WBGT), which affect the aircraft field. The number of future limited days was quantitatively calculated based on the model outputs applying SSP1-2.6 and SSP5-8.5 and the operational limits of the previous three factors, and the spatial distribution, time series, and correlation of each result were analyzed. In conclusion, it was analyzed that the number of limited days by VMC would decrease, resulting from the rise in temperature and the drop in relative humidity. This means the operational environment in VMC will improve. On the other hand, the number of limited days by the runway temperature and WBGT would increase, resulting from the rise in temperature. This means the operational environment in runway temperature and WBGT will worsen.

키워드

참고문헌

  1. Coffel, E., and R. Horton, 2015: Climate change and the impact of extreme temperatures on aviation. Wea. Climate Soc., 7, 94-102, doi:10.1175/WCAS-D-14-00026.1.
  2. Doran, J. A., P. J. Roohr, D. J. Beberwyk, G. R. Brooks, G. A. Bayno, R. T. Williams, J. M. Lewis, and R. J. Lefevre, 1999: The MM5 at the Air Force Weather Agency - New products to support military operation. The 8th Conference on Aviation, Range, and Aerospace Meteorology, Dallas, Texas.
  3. Eom, H. S., S. Kim, N. S. Seo, J. D. Hwang, B. M. Lim, K. D. Ki, and J. M. Kim, 2015: The Development of Future Defense Climate Index based on RCP Scenario - Runway Temperature. 1st Annual Korea Meteorological Society Conference, 10-11.
  4. Gultepe, I., M. D. Muller, and Z. Boybeyi, 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor. Climatol., 45, 1469-1480, doi:10.1175/JAM2423.1.
  5. IPCC, 2021: Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel. Cambridge University Press, Cambridge, 88 pp.
  6. KEI, 2011: Economic analysis of climate change in Korea(II). Korea Environment Institute, 75 pp.
  7. Kim, J.-U., T.-J. Kim, D.-H. Kim, Y.-H. Byun, E.-C. Chang, D.-H. Cha, J.-B. Ahn, and S.-K. Min, 2022: Performance Evaluation and Future Projection of East Asian Climate using SSP Scenario-based CORDEX-East Asia Phase 2 Multi-RCM Simulations. J. Climate Change Res., 13, 339-354, doi:10.15531/KSCCR.2022.13.3.339.
  8. Kim, S., H. S. Eom, S. Y. Hong, J. S. Kim, and C. H. Lee, 2014: The Development of Future Defense Climate Index based on RCP Scenario - WBGT. 2nd Annual Korea Meteorological Society Conference, 497-499.
  9. Kim, S.-H., J.-H. Kim, H.-Y. Chun, and R. D. Sharman, 2023: Global response of upper-level aviation turbulence from various sources to climate change. npj Clim. Atmos. Sci., 6, 12 pp doi:10.1038/s41612-023-00421-3.
  10. Lee, O. J., and S. D. Kim, 2016: Future PMPs Projection under future dew point temperature variation of RCP 8.5 climate change scenario. J. Korean Soc. Hazard Mitig., 16, 505-514, doi:10.9798/KOSHAM.2016.16.2.505.
  11. Lee, T. J., S. H. Park, S. Y. Park, M. J. Kim, G. M. Kang, J. D. Hwang, and S. Kim, 2023: The Impact of climate change on future ground operations. J. Korea Institute of Military Science and Technol., 26. 431-438, doi:10.9766/KIMST.2023.26.5.431.
  12. McRae, M., R. A. Lee, S. Steinschneider, and F. Galgano, 2021: Assessing Aircraft Performance in a Warming Climate. Wea. Climate and Soc., 13, 39-55, doi:10.1175/wcas-d-20-0098.1.
  13. NIMS, 2020: The Climate Change Outlook Report 2020 on Korea Peninsula. National Institute of Meteorological Sciences, 56 pp.
  14. O'Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. Vuuren, 2014: A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122, 387-400, doi:10.1007/s10584-013-0905-2.
  15. Ono, M., and M. Tonouchi, 2014: Estimation of wet-bulb globe temperature using generally measured meteorological indices. Jpn. J. Biometer., 50, 147-157, doi:10.11227/seikisho.50.147.
  16. ROKAF, 2016: Defence Climate Change White Book. Republic Of Korea AirForce Weather Group, 237 pp.
  17. Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. J. Appl. Meteorol., 38, 385-404, doi:10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.
  18. WMO, 2021: The State of the Global Climate. World Meteorological Organization, 574 pp.