DOI QR코드

DOI QR Code

Development of a prototype TL/OSL reader for on-site use in a large-scale radiological accident

  • Received : 2023.11.08
  • Accepted : 2024.01.13
  • Published : 2024.06.25

Abstract

This study presents the development and characterization of a prototype TL/OSL reader for the retrospective dose assessment of individuals in radiological emergencies. The reader is portable, semi-automatic, and capable of accurate measurements. The dimension of the reader is 25 × 25 × 37 cm3 and the weight is about 15 kg. The reader consists of a sample moving stage, a heating module, an optical stimulation module, a detection module, a data acquisition (DAQ) unit, a nitrogen gas control module, and a PC with a GUI program. The reader has three measurement modes: TL, CW_OSL, and custom mode. The reader was characterized using commercial thermal luminescence dosimeters (TLD, LiF:Mg,Cu,Si) and optically stimulated dosimeters (OSLD, Al2O3:C), as well as fortuitous materials, such as display glasses and resistors of mobile phone. The results showed that the reader is capable of measuring signals with a detection limit of up to 0.02 mGy using a commercial dosimeter. In the dose recovery test using fortuitous materials, the reconstructed doses obtained three days post-irradiation closely aligned with the initially administered doses. As a result, this study suggests that the developed TL/OSL reader is a promising instrument for emergency dose assessment at accident sites.

Keywords

Acknowledgement

The study was carried out under the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (RS-2022-00144350, RS-2022-00144210) and Korea Atomic Energy Research Institute (project number: 521410-23).

References

  1. ICRU, ICRU Report 94: Methods for Initial-phase Assessment of Individual Doses Following Acute Exposure to Ionizing Radiation, SAGE journals), 2019. 
  2. I. Fiedler, C. Woda, Thermoluminescence of chip inductors from mobile phones for retrospective and accident dosimetry, Radiat. Meas. 46 (2011) 1862-1865.  https://doi.org/10.1016/j.radmeas.2011.05.077
  3. E.L. Inrig, D.I. Godfrey-Smith, S. Khanna, Optically stimulated luminescence of electronic components for forensic, retrospective, and accident dosimetry, Radiat. Meas. 43 (2008) 726-730.  https://doi.org/10.1016/j.radmeas.2007.11.078
  4. C. Bassinet, N. Pirault, M. Baumann, I. Clairand, Radiation accident dosimetry: TL properties of mobile phone screen glass, Radiat. Meas. 71 (2014) 461-465.  https://doi.org/10.1016/j.radmeas.2014.03.025
  5. M. Discher, C. Woda, Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry, Radiat. Meas. 53-54 (2013) 12-21.  https://doi.org/10.1016/j.radmeas.2013.04.002
  6. A. Kandemir, H. Toktamis,, Thermoluminescence studies of SIM card chips used in mobile communication providers in Turkey, Radiat. Phys. Chem. 149 (2018) 84-89.  https://doi.org/10.1016/j.radphyschem.2018.04.002
  7. C. Woda, T. Spottl, On the use of OSL of wire-bond chip card modules for retrospective and accident dosimetry, Radiat. Meas. 44 (2009) 548-553.  https://doi.org/10.1016/j.radmeas.2009.02.016
  8. E.A. Ainsbury, E. Bakhanova, J.F. Barquinero, M. Brai, V. Chumak, V. Correcher, F. Darroudi, P. Fattibene, G. Gruel, I. Guclu, S. Horn, A. Jaworska, U. Kulka, C. Lindholm, D. Lloyd, A. Longo, M. Marrale, O. Monteiro Gil, U. Oestreicher, J. Pajic, B. Rakic, H. Romm, F. Trompier, I. Veronese, P. Voisin, A. Vral, C. A. Whitehouse, A. Wieser, C. Woda, A. Wojcik, K. Rothkamm, Review of retrospective dosimetry techniques for external ionising radiation exposures, Radiat. Protect. Dosim. 147 (2011) 573-592.  https://doi.org/10.1093/rpd/ncq499
  9. P. Fattibene, F. Trompier, C. Bassinet, B. Ciesielski, M. Discher, J. Eakins, C.A. B. Gonzales, C. Huet, A. Romanyukha, C. Woda, Reflections on the future developments of research in retrospective physical dosimetry, Physics Open 14 (2023) 100132. 
  10. H. Kim, M.C. Kim, J. Lee, I. Chang, S.K. Lee, J.-L. Kim, Thermoluminescence of AMOLED substrate glasses in recent mobile phones for retrospective dosimetry, Radiat. Meas. 122 (2019) 53-56.  https://doi.org/10.1016/j.radmeas.2019.01.004
  11. C. Bassinet, C. Woda, E. Bortolin, S. Della Monaca, P. Fattibene, M.C. Quattrini, B. Bulanek, D. Ekendahl, C.I. Burbidge, V. Cauwels, E. Kouroukla, T. Geber-Bergstrand, A. Mrozik, B. Marczewska, P. Bilski, S. Sholom, S.W.S. McKeever, R. W. Smith, I. Veronese, A. Galli, L. Panzeri, M. Martini, Retrospective radiation dosimetry using OSL of electronic components: results of an inter-laboratory comparison, Radiat. Meas. 71 (2014) 475-479.  https://doi.org/10.1016/j.radmeas.2014.03.016
  12. H. Kim, M.C. Kim, J. Lee, I. Chang, S.K. Lee, J.-L. Kim, Dose re-evaluation in personal dosimetry using the phototransferred thermoluminescence method of LiF: Mg,Cu,Si TLD, Radiat. Meas. 118 (2018) 20-25.  https://doi.org/10.1016/j.radmeas.2018.08.006
  13. G.L. Long, J.D. Winefordner, Limit of detection. A closer look at the IUPAC definition, Anal. Chem. 55 (2008) 712A-724A. 
  14. C. Woda, I. Fiedler, L. Urso, J.C. Kaiser, Retrospective dosimetry for the population in emergency situations, Final report. Bundesamt fuer Strahlenschutz. (2012). 
  15. H. Kim, M. Discher, M.C. Kim, C. Woda, J. Lee, Thermally assisted optically stimulated luminescence protocol of mobile phone substrate glasses for accident dosimetry, Radiat. Meas. 146 (2021) 106696. 
  16. M. Discher, C. Woda, D. Ekendahl, C. Rojas-Palma, F. Steinhausler, Evaluation of physical retrospective dosimetry methods in a realistic accident scenario: results of a field test, Radiat. Meas. 142 (2021) 106544. 
  17. H. Kim, H. Yu, M. Discher, M.C. Kim, Y. Choi, H. Lee, J.T. Lee, H. Lee, Y.-s. Kim, H. S. Kim, J. Lee, A small-scale realistic inter-laboratory accident dosimetry comparison using the TL/OSL from mobile phone components, Radiat. Meas. 150 (2022) 106696.
  18. K. Munyikwa, T.C. Kinnaird, D.C. Sanderson, The potential of portable luminescence readers in geomorphological investigations: a review, Earth Surf. Process. Landforms 46 (2021) 131-150.  https://doi.org/10.1002/esp.4975
  19. D.C. Sanderson, S. Murphy, Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating, Quat. Geochronol. 5 (2010) 299-305.  https://doi.org/10.1016/j.quageo.2009.02.001
  20. C.L. Larsson, E.L. Inrig, Portable Optically Stimulated Luminescence Detector for Forensics and Retrospective Dosimetry, 2011.