DOI QR코드

DOI QR Code

Unveiling the direct conversion X-ray sensing potential of Brucinium benzilate and N-acetylglcyine

  • T. Prakash (National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus) ;
  • C. Karnan (Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS)) ;
  • N. Kanagathara (Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS)) ;
  • R.R. Karthieka (National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus) ;
  • B.S. Ajith Kumar (National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus) ;
  • M. Prabhaharan (Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS))
  • Received : 2023.09.11
  • Accepted : 2024.01.18
  • Published : 2024.06.25

Abstract

The study investigates the dose-dependent direct X-ray sensing characteristics of Brucinium benzilate (BB) and N-acetylglycine (NAG) organic crystals. BB and NAG were prepared as a slurry and deposited as a thick film on a patterned metal electrode. The X-ray induced photocurrent response was examined for various exposure doses using an intraoral pulsed 70 keV X-ray machine connected to a source meter. Subsequently, the morphological properties and thickness of the thick films were analyzed using scanning electron microscopy (SEM). At a photon energy of 70 keV, the attenuation coefficient values for NAG and BB crystals were determined to be approximately 0.181 and 0.178 cm2/g, respectively. The X-ray stopping power of the crystals was measured using a suniray-2 X-ray imaging system. To evaluate the responsiveness of the sensors, the photocurrent sensitivity and noise equivalent dose rate (NED) were calculated for both thick films. The findings demonstrated a noteworthy capability of sensing low doses (mGy), thereby suggesting the potential application of these organic materials in X-ray sensor development.

Keywords

References

  1. A. Ciavatti, E. Capria, A. Fraleoni-Morgera, G. Tromba, D. Dreossi, P.J. Sellin, P. Cosseddu, A. Bonfiglio, B. Fraboni, Toward low-voltage and bendable X-ray direct detectors based on organic semiconducting single crystals, Adv. Mater. 27 (2015) 7213-7220, https://doi.org/10.1002/adma.201503090. 
  2. D. Zhao, M. Xu, B. Xiao, B. Zhang, L. Yan, G. Zeng, A. Dubois, P. Sellin, W. Jie, Y. Xu, Purely organic 4HCB single crystal exhibiting high hole mobility for direct detection of ultralow-dose X-radiation, J. Mater. Chem. A 8 (2020) 5217-5226, https://doi.org/10.1039/C9TA12817D. 
  3. M. Chen, L. Sun, X. Ou, H. Yang, X. Liu, H. Dong, W. Hu, X. Duan, Organic semiconductor single crystals for X-ray imaging, Adv. Mater. 33 (2021) 2104749, https://doi.org/10.1002/adma.202104749. 
  4. L. Basirico, A. Ciavatti, B. Fraboni, Solution-grown organic and perovskite X-ray detectors: a new paradigm for the direct detection of ionizing radiation, Adv. Mater. Technol. 6 (2021) 2000475, https://doi.org/10.1002/admt.202000475. 
  5. M.P.A. Nanayakkara, Q. He, A. Ruseckas, A. Karalasingam, L. Matjacic, M. G. Masteghin, L. Basirico, I. Fratelli, A. Ciavatti, R.C. Kilbride, S. Jenatsch, A. J. Parnell, B. Fraboni, A. Nisbet, M. Heeney, K.D.G.I. Jayawardena, S.R.P. Silva, Tissue equivalent curved organic X-ray detectors utilizing high atomic number polythiophene analogues, Adv. Sci. 10 (2023) 2304261, https://doi.org/10.1002/advs.202304261. 
  6. I. Temino, L. Basirico, I. Fratelli, A. Tamayo, A. Ciavatti, M. Mas-Torrent, B. Fraboni, Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films, Nat. Commun. 11 (2020) 2136, https://doi.org/10.1038/s41467-020-15974-7. 
  7. V.J. Thanigaiarasu, N. Kanagathara, K. Senthilkumar, G. Anbalagan, M. K. Marchewka, Structural, optical and photo luminescence studies on N-acetylglycine single crystal, J. Optoelectron. Adv. Mater. 22 (2020) 393-399. 
  8. C. Karnan, K.S. Nagaraja, S. Manivannan, A. Manikandan, V. Ragavendran, Crystal structure, spectral investigations, DFT and antimicrobial activity of Brucinium benzilate (BBA), J. Mol. Model. 27 (8) (2021) 223, https://doi.org/10.1007/s00894-021-04842-w. 
  9. V.J. Thanigaiarasu, N. Kanagathara, R. Usha, V. Sabari, V. Natarajan, Mechanical, thermal properties and hirshfeld surface analysis of N-acetylglycine single crystal, Asian J. Chem. 33 (1) (2021) 203-209, https://doi.org/10.14233/ajchem.2021.22983. 
  10. B.S. Ajith Kumar, T. Prakash, Grain size effect on direct conversion low-dose X-ray sensing nature of nanocrystalline silver bismuth sulfide, Sensor Actuator Phys. 354 (2023) 924-4247, https://doi.org/10.1016/j.sna.2023.114276, 114276. 
  11. B.S. Ajith Kumar, T. Prakash, Synergistic effect of AgBiS2 segregated NaV3O8 nanostructures in direct conversion X-ray sensors, Sensor Actuator Phys. 358 (2023) 924-4247, https://doi.org/10.1016/j.sna.2023.114453, 114453. 
  12. R.R. Karthieka, G. Devanand Venkatasubbu, T. Prakash, Crystallite size effect on X-ray-instigated photocurrent properties of PbWO4 thick film, Electron. Mater. Lett. 18 (2022) 304-312, https://doi.org/10.1007/s13391-022-00339-7. 
  13. R.R. Karthieka, G. Devanand Venkatasubbu, T. Prakash, Nanocomposite thick films of CsPbI3: PVDF-HFP on plastics for direct conversion low-dose X-ray sensor, Mater. Sci. Semicond. Process. 120 (2020) 105289, https://doi.org/10.1016/j.mssp.2020.105289. 
  14. Nist XCOM -. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. 
  15. R.R. Karthieka, R. Nafeesa Begum, T. Prakash, Direct conversion X-ray sensing nature of bismuth (III) iodide thick films, Chin. J. Phys. 71 (2021) 643-650, https://doi.org/10.1016/j.cjph.2021.02.017. 
  16. C. Haugen, S.O. Kasap, J. Rowlands, Charge transport and electron-hole-pair creation energy in stabilized a-Se X-ray photoconductors, J. Phys. D Appl. Phys. 32 (1999) 200, https://doi.org/10.1088/0022-3727/32/3/004. 
  17. B. Fraboni, A. Ciavatti, L. Basirico, A. Fraleoni-Morgera, Organic semiconducting single crystals as solid-state sensors for ionizing radiation, Faraday Discuss 174 (2014) 219-234, https://doi.org/10.1039/C4FD00102H. 
  18. P. Buchele, M. Richter, S.F. Tedde, G.J. Matt, G.N. Ankah, R. Fischer, J. E. Macdonald, C.J. Brabec, T. Kraus, U. Lemmer, O. Schmidt, X-ray imaging with scintillator-sensitized hybrid organic photodetectors, Nat. Photonics 9 (2015) 843, https://doi.org/10.1038/nphoton.2015.216. 
  19. S. Nambiar, E.K. Osei, J.T. Yeow, Bismuth sulfide nanoflowers for detection of X-rays in the mammographic energy range, Sci. Rep. 5 (2015) 9440, https://doi.org/10.1038/srep09440. 
  20. T. Prakash, S.A.K. Narayan Dass, K. Prem Nazeer, Thermal sensor properties of PANI (EB)-CSAx (X= 0.4±0.1 mol) polymer thin films, Bull. Mater. Sci. 25 (6) (2002) 521-526, https://doi.org/10.1007/BF02710542. 
  21. A.I. Ayesh, B. Salah, R. Nawwas, A. Alyafei, S. AlMansouri, L. Al-Sulaiti, Production of flexible nanocomposite membranes for X-ray detectors, Appl. Surf. Sci. 528 (2020) 146958, https://doi.org/10.1016/j.apsusc.2020.146958. 
  22. R. Chaudhari, C. Ravi Kant, A. Garg, Polymer-BiI3 composites for high-performance, room-temperature, direct X-ray detectors, MRS Commun. (2022), https://doi.org/10.1557/s43579-022-00185-6.