Acknowledgement
The authors express a sincere appreciation to support by the National Natural Science Foundation of China (Nos. 12275226 and 12075195).
References
- R.C. Ewing, W.J. Weber, F.W.C. Jr, Radiation effects in nuclear waste forms for high-level radioactive waste, Prog. Nucl. Energy 29 (1995) 63-127. https://doi.org/10.1016/0149-1970(94)00016-Y
- A.I. Orlova, Crystalline phosphates for HLW immobilization-composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology, J. Nucl. Mater. 559 (2022) 153407.
- L.O. Hagman, P. Kierkegaard, P. Karvonen, A.I. Virtanen, J. Paasivirta, The crystal structure of NaMe2IV(PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand. 22 (1968) 1822-1832. https://doi.org/10.3891/acta.chem.scand.22-1822
- V.I. Pet'kov, E.A. Asabina, A.V. Markin, N.N. Smirnova, Synthesis, characterization and thermodynamic data of compounds with NZP structure, J. Therm. Anal. Calorim. 91 (2008) 155-161. https://doi.org/10.1007/s10973-007-8370-7
- Y. Liu, M.S. Molokeev, Q. Liu, Z. Xia, Crystal structures, phase transitions and thermal expansion properties of NaZr2(PO4)3-SrZr4(PO4)6 solid solutions, Inorg. Chem. Front. 5 (2018) 619-625. https://doi.org/10.1039/C7QI00782E
- A. Bohre, O.P. Shrivastava, Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphates, J. Nucl. Mater. 433 (2013) 486-493. https://doi.org/10.1016/j.jnucmat.2012.10.012
- A. Bohre, O.P. Shrivastava, Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium and strontium, Int. J. Appl. Ceram. Technol. 10 (2013) 552-563. https://doi.org/10.1111/j.1744-7402.2012.02811.x
- A.I. Orlova, V.Y. Volgutov, D.A. Mikhailov, D.M. Bykov, V.A. Skuratov, V. N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov, Phosphate Ca1/4Sr1/4Zr2(PO44)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater. 446 (2014) 232-239. https://doi.org/10.1016/j.jnucmat.2013.11.025
- V.I. Pet'kov, E. Asabina, V. Loshkarev, M. Sukhanov, Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization, J. Nucl. Mater. 471 (2016) 122-128. https://doi.org/10.1016/j.jnucmat.2016.01.016
- R. Chourasia, O.P. Shrivastava, R.D. Ambashta, P.K. Wattal, Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix, Ann. Nucl. Energy 37 (2010) 103-112. https://doi.org/10.1016/j.anucene.2009.11.011
- C. Hashimoto, S. Nakayama, Immobilization of Cs and Sr to HZr2(PO4)3 using an autoclave, J. Nucl. Mater. 396 (2010) 197-201. https://doi.org/10.1016/j.jnucmat.2009.11.005
- A. Bohre, K. Awasthi, O.P. Shrivastava, Immobilization of lanthanum, cerium, and selenium into ceramic matrix of sodium zirconium phosphate, Radiochemistry 56 (2014) 385-391. https://doi.org/10.1134/S1066362214040055
- R. Mooney, Crystal structures of a series of rare earth phosphates, J. Chem. Phys. 16 (1948) 1003.
- Y. Ni, J.M. Hughes, Crystal chemistry of the monazite and xenotime structures, Am. Mineral. 80 (1995) 21-26. https://doi.org/10.2138/am-1995-1-203
- N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc. 31 (2011) 941-976. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019
- Y. Hikichi, T. Ota, K. Daimon, T. Hattori, M. Mizuno, Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R = Y, Er, Yb, or Lu), J. Am. Ceram. Soc. 81 (2010) 2216-2218. https://doi.org/10.1111/j.1151-2916.1998.tb02613.x
- L. Bois, M.J. Guittet, F. Carrot, P. Trocellier, M. Gautier-Soyer, Preliminary results on the leaching process of phosphate ceramics, potential hosts for actinide immobilization, J. Nucl. Mater. 297 (2001) 129-137. https://doi.org/10.1016/S0022-3115(01)00607-9
- Y. Teng, P. Zeng, Y. Huang, L. Wu, X. Wang, Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability, J. Nucl. Mater. 465 (2015) 482-487. https://doi.org/10.1016/j.jnucmat.2015.06.044
- Y. Teng, X. Wang, Y. Huang, L. Wu, P. Zeng, Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics, Ceram. Int. 41 (2015) 10057-10062. https://doi.org/10.1016/j.ceramint.2015.04.095
- N. Dacheux, N. Clavier, A.C. Robisson, O. Terra, F. Audubert, J. Lartigue, C. Guy, Immobilisation of actinides in phosphate matrices, CR. Chim. 7 (2004) 1141-1152. https://doi.org/10.1016/j.crci.2004.02.019
- S. Maes, W.Q. Zhuang, K. Rabaey, L. Alvarez-Cohen, T. Hennebel, Concomitant leaching and electrochemical extraction of rare earth elements from monazite, Environ. Sci. Technol. 51 (2017) 1654-1661. https://doi.org/10.1021/acs.est.6b03675
- L. Zhan, J. Wang, J. Wang, X. Zhang, Y. Wei, S. Yang, Phase evolution and microstructure of new Sr0.5Zr2(PO4)3-NdPO4 composite ceramics prepared by one-step microwave sintering, Ceram. Int. 46 (2020) 19822-19826. https://doi.org/10.1016/j.ceramint.2020.05.035
- J. Wang, L. Zhan, J. Wang, J. Wen, L. Fan, L. Wu, Sr/Ce co-immobilization evaluation and high chemical stability of novel Sr0.5Zr2(PO4)3-CePO4 composite ceramics for nuclear waste forms, J. Australas. Ceram. Soc. 58 (2022) 881-889. https://doi.org/10.1007/s41779-022-00736-z
- Y. Wei, P. Luo, J. Wang, J. Wen, L. Zhan, X. Zhang, S. Yang, J. Wang, Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr22(PO4)3 ceramics for immobilizing simulated radionuclides, J. Nucl. Mater. 540 (2020) 152366.
- J. Wang, J. Wang, Y. Huang, K. Zhang, Y. Li, X. Wu, Preparation of alkali-activated slag-fly ash-metakaolin hydroceramics for immobilizing simulated sodium-bearing waste, J. Am. Ceram. Soc. 98 (2015) 1393-1399. https://doi.org/10.1111/jace.13489
- V.S. Kurazhkovskaya, D.M. Bykov, E.Y. Borovikova, N.Y. Boldyrev, L. Mikhalitsyn, A.I. Orlova, Vibrational spectra and factor group analysis of lanthanide and zirconium phosphates MIII0.33Zr2(PO4)3, where MIII = Y, La-Lu, Vib. Spectrosc. 52 (2010) 137-143. https://doi.org/10.1016/j.vibspec.2009.12.002
- R.L. Frost, Y. Xi, R. Scholz, F.M. Belotti, Infrared and Raman spectroscopic characterization of the phosphate mineral kosnarite KZr2(PO4)3 in comparison with other pegmatitic phosphates, Transition Met. Chem. (London) 37 (2012) 777-782. https://doi.org/10.1007/s11243-012-9652-x
- J.M. Leys, Y. Ji, M. Klinkenberg, P.M. Kowalski, H. Schlenz, S. Neumeier, D. Bosbach, G. Deissmann, Monazite-type SmPO4 as potential nuclear waste form: insights into radiation effects from ion-beam irradiation and atomistic simulations, Materials 15 (2022) 3434.
- E.N. Silva, A.P. Ayala, I. Guedes, C.W.A. Paschoal, R.L. Moreira, C.K. Loong, L. A. Boatner, Vibrational spectra of monazite-type rare-earth orthophosphates, Opt. Mater. 29 (2006) 2247, 2230.
- R.L. Frost, Y. Xi, A vibrational spectroscopic study of the phosphate mineral Wardite NaAl3(PO4)2(OH)4.2H2O, Spectrochim 93 (2012) 1557-1563.
- G.T. Lapidus, F.M. Doyle, Selective thorium and uranium extraction from monazite: I. Single-stage oxalate leaching, Hydrometallurgy 154 (2015) 102-110. https://doi.org/10.1016/j.hydromet.2015.04.006
- M. Sugantha, N. Kumar, U.V. Varadaraju, Synthesis and leachability studies of NZP and eulytine phases, Waste Manage. (Tucson, Ariz.) 18 (1998) 275-279.
- R. Ravikumar, B. Gopal, Structural integrity of Cs and Sr immobilized lacunar apatite phosphate simulated ceramic wasteform Na0.9Cs0.1Pb3Sr(PO4)3 under heat and aqueous flow, J. Nucl. Mater. 558 (2022) 153388.
- S.P. Kumar, B. Gopal, Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12, J. Alloys Compd. 615 (2014) 419-423. https://doi.org/10.1016/j.jallcom.2014.06.192
- X. Zhao, Y. Li, Y. Teng, H. Liu, X. Zheng, H. He, S. Wang, R. Ahuja, Exploring the relationship between Ln leaching and Ln-O binding energy in monazite (Nd, Sm, Eu), J. Am. Ceram. Soc. 105 (2021) 553-563. https://doi.org/10.1111/jace.18077
- B.C. Sales, C.W. White, L.A. Boatner, A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste, Nucl. Chem. Waste Manag. 4 (1983) 281-289. https://doi.org/10.1016/0191-815X(83)90053-0