DOI QR코드

DOI QR Code

Failure analysis of damaged tungsten monoblock components of upper divertor outer target in EAST fusion device

  • Kang Wang (Institute of Industry & Equipment Technology, Hefei University of Technology) ;
  • Ya Xi (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Xiang Zan (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Dahuan Zhu (Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences) ;
  • Laima Luo (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Rui Ding (Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences) ;
  • Yucheng Wu (School of Materials Science and Engineering, Hefei University of Technology)
  • Received : 2023.08.02
  • Accepted : 2024.01.25
  • Published : 2024.06.25

Abstract

A melting failure of W monoblock components of the upper divertor outer target in EAST occurred during the plasma campaigns in 2019. The failure characters and microstructure evolution of the failed W monoblock have been well investigated on one string (W436 string). Near the strike point region where heat flux density is highest, macroscopic cracks and severe surface damage such as dimensional change, melting and solidification are visible in several W monoblocks. At the same time, debonding, melting and migration of Cu/CuCrZr cooling tube components introduced fatal damage to the structure and function. The heat-induced microstructure evolution in the rest part has been examined via hardness tests and metallography. From the heat flux surface to the cooling tube, hardness increased gradually and the recrystallized grains could be found in the region with the highest temperature, while recrystallization grains also appear in some W monoblocks near the cooling tube area. The detailed microstructure has been investigated by metallography and EBSD. Such cases in EAST provide experiences on the extreme condition of accidental loss of coolant or higher discharge power in future devices.

Keywords

Acknowledgement

This paper was supported by National MCF Energy R&D Program, China (Grant No. 2019YFE03120003 and 2022YFE03140000) and Fundamental Research Funds for the Central Universities, China (Grant No. JZ2023HGQB0165).

References

  1. X. Li, L. Zhang, G. Wang, Y. Long, J. Yang, M. Qin, X. Qu, K.P. So, J. Nucl. Mater. 533 (2020) 152074. 
  2. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, P.C. Stangeby, J. Nucl. Mater. 438 (2013) S48-S56.  https://doi.org/10.1016/j.jnucmat.2013.01.008
  3. A.W. Kleyn, N.J. Lopes Cardozo, U. Samm, Phys. Chem. Chem. Phys. 8 (2006) 1761-1774.  https://doi.org/10.1039/B514367E
  4. D. Zhu, C. Li, B. Gao, R. Ding, B. Wang, Z. Guo, C. Xuan, B. Yu, Y. Lei, J. Chen, t. East Team, Nucl. Fusion 62 (2022) 056004. 
  5. V. Philipps, J. Nucl. Mater. 415 (2011) S2-S9.  https://doi.org/10.1016/j.jnucmat.2011.01.110
  6. T. Hirai, S. Carpentier-Chouchana, F. Escourbiac, S. Panayotis, A. Durocher, L. Ferrand, M. Garcia-Martinez, J.P. Gunn, V. Komarov, M. Merola, R.A. Pitts, G. De Temmerman, Fusion Eng. Des. 127 (2018) 66-72.  https://doi.org/10.1016/j.fusengdes.2017.12.007
  7. D.M. Yao, G.N. Luo, Z.B. Zhou, L. Cao, Q. Li, W.J. Wang, L. Li, S.G. Qin, Y.L. Shi, G. H. Liu, J.G. Li, Phys. Scripta T167 (2016) 014003. 
  8. M. Missirlian, M. Firdaouss, M. Richou, P. Languille, S. Lecocq, M. Lipa, Fusion Eng. Des. 88 (2013) 1793-1797. https://doi.org/10.1016/j.fusengdes.2013.03.048
  9. M. Missirlian, M. Firdaouss, M. Richou, C. Hernandez, L. Gargiulo, J. Bucalossi, C. Brun, Y. Corre, E. Delmas, H. Greuner, B. Guillermin, J. Gunn, J.C. Hatchressian, R. Jalageas, Q. Li, M. Lipa, M. Lozano, G. Luo, C. Pocheau, H. Roche, E. Tsitrone, N. Vignal, W. Wang, A. Saille, B. Zago, Fusion Eng. Des. 193 (2023) 113683. 
  10. L. Horton, Fusion Eng. Des. 96-97 (2015) 28-33.  https://doi.org/10.1016/j.fusengdes.2015.05.020
  11. A. Herrmann, H. Greuner, N. Jaksic, M. Balden, A. Kallenbach, K. Krieger, P. de Marn'e, V. Rohde, A. Scarabosio, G. Schall, Nucl. Fusion 55 (2015) 063015. 
  12. S.-H. Hong, K. Kim, H. Kim, E. Bang, H. Choi, H.-C. Kim, R.A. Pitts, Fusion Eng. Des. 136 (2018) 1518-1522.  https://doi.org/10.1016/j.fusengdes.2018.05.046
  13. G. Federici, C. Bachmann, W. Biel, L. Boccaccini, F. Cismondi, S. Ciattaglia, M. Coleman, C. Day, E. Diegele, T. Franke, M. Grattarola, H. Hurzlmeier, A. Ibarra, A. Loving, F. Maviglia, B. Meszaros, C. Morlock, M. Rieth, M. Shannon, N. Taylor, M.Q. Tran, J.H. You, R. Wenninger, L. Zani, Fusion Eng. Des. 109-111 (2016) 1464-1474.  https://doi.org/10.1016/j.fusengdes.2015.11.050
  14. Y. Wan, J. Li, Y. Liu, X. Wang, V. Chan, C. Chen, X. Duan, P. Fu, X. Gao, K. Feng, S. Liu, Y. Song, P. Weng, B. Wan, F. Wan, H. Wang, S. Wu, M. Ye, Q. Yang, G. Zheng, G. Zhuang, Q. Li, C. team, Nucl. Fusion 57 (2017) 102009. 
  15. J. Linke, J. Du, T. Loewenhoff, G. Pintsuk, B. Spilker, I. Steudel, M. Wirtz, Matter Radiat. Extremes 4 (2019) 056201. 
  16. Y. Xi, G. He, X. Zan, K. Wang, D. Zhu, L. Luo, R. Ding, Y. Wu, Appl. Sci. 13 (2023) 745. 
  17. V. Shah, M.P.F.H.L. van Maris, J.A.W. van Dommelen, M.G.D. Geers, Nucl. Mater. Energy 22 (2020) 100716. 
  18. J.-H. You, H. Greuner, B. Boswirth, K. Hunger, S. Roccella, H. Roche, Nucl. Mater. Energy 33 (2022) 101307. 
  19. N. Nemati, A. Manhard, H. Greuner, K. Hunger, B. Boswirth, E. Visca, J.H. You, Nucl. Mater. Energy 36 (2023) 101465. 
  20. G. Pintsuk, M. Bednarek, P. Gavila, S. Gerzoskovitz, J. Linke, P. Lorenzetto, B. Riccardi, F. Escourbiac, Fusion Eng. Des. 98-99 (2015) 1384-1388.  https://doi.org/10.1016/j.fusengdes.2015.01.037
  21. M. Fukuda, Y. Seki, K. Ezato, K. Yokoyama, H. Nishi, S. Suzuki, J. Nucl. Mater. 542 (2020) 152509. 
  22. S. Nogami, M. Toyota, W. Guan, A. Hasegawa, Y. Ueda, Fusion Eng. Des. 120 (2017) 49-60.  https://doi.org/10.1016/j.fusengdes.2017.04.102
  23. C. Li, D. Zhu, R. Ding, B. Wang, J. Chen, B. Gao, Y. Lei, Nucl. Mater. Energy 25 (2020) 100847. 
  24. Z. Zhou, D. Yao, L. Cao, J. Fusion Energy 34 (2014) 93-98.  https://doi.org/10.1007/s10894-014-9765-7
  25. G.N. Luo, Q. Li, J.M. Chen, X. Liu, W. Liu, Z.J. Zhou, D.M. Yao, Fusion Sci. Technol. 62 (2017) 9-15.  https://doi.org/10.13182/FST12-A14104
  26. R.A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J.P. Gunn, T. Hirai, A. S. Kukushkin, E. Kaveeva, M.A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P.C. Stangeby, G. De Temmerman, I. Veselova, S. Wiesen, Nucl. Mater. Energy 20 (2019) 100696. 
  27. G.N. Luo, G.H. Liu, Q. Li, S.G. Qin, W.J. Wang, Y.L. Shi, C.Y. Xie, Z.M. Chen, M. Missirlian, D. Guilhem, M. Richou, T. Hirai, F. Escourbiac, D.M. Yao, J.L. Chen, T.J. Wang, J. Bucalossi, M. Merola, J.G. Li, Nucl. Fusion 57 (2017) 065001. 
  28. T. Hirai, F. Escourbiac, V. Barabash, A. Durocher, A. Fedosov, L. Ferrand, T. Jokinen, V. Komarov, M. Merola, S. Carpentier-Chouchana, N. Arkhipov, V. Kuznetcov, A. Volodin, S. Suzuki, K. Ezato, Y. Seki, B. Riccardi, M. Bednarek, P. Gavila, J. Nucl. Mater. 463 (2015) 1248-1251.  https://doi.org/10.1016/j.jnucmat.2014.12.027
  29. D. Zhu, C. Li, R. Ding, B. Wang, J. Chen, B. Gao, Y. Gu, X. Gong, Nucl. Fusion 60 (2020) 016036. 
  30. A. Durif, M. Richou, G. Kermouche, J.M. Bergheau, Int. J. Fract. 230 (2021) 83-98.