DOI QR코드

DOI QR Code

Implication of ICRP pediatric reference voxel phantoms on dose assessment of patients in radioiodine therapy

  • Soo Min Lee (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chansoo Choi (J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida) ;
  • Ji Won Choi (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chul Hee Min (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Seulki Ko (Department of Preventive Medicine, Eulji University School of Medicine) ;
  • Bangho Shin (Department of Nuclear Engineering, Hanyang University) ;
  • Chan Hyeong Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Yeon Soo Yeom (Department of Radiation Convergence Engineering, Yonsei University)
  • 투고 : 2023.11.15
  • 심사 : 2024.01.23
  • 발행 : 2024.06.25

초록

To investigate the impact of the recently released pediatric reference voxel phantoms (0-, 1-, 5-, 10-, 15-year-old males and females) of the International Commission on Radiological Protection (ICRP) on organ dose estimates for radioactive iodine (RAI) treatment in pediatric patients, we calculated and analyzed pediatric-specific iodine131 S values (rT ← thyroid) for the 30 radiosensitive organs by conducting Monte Carlo simulations using the Geant4. The gender dependency in the S values was frequently seen for the 15-year-old phantoms with higher S values of female than male. In addition, the age dependency in the S values was observed for most target organs; that is, the S values tend to decrease for older ages (e.g., ~120 times for the gonads between the adult and newborn) due mainly to the inter-organ distances generally longer for older ages. Moreover, we observed that the iodine-131 S values tend to be significantly greater by up to ~145.5 times than those of the stylized phantoms that have been widely used for organ dose estimates of pediatric RAI patients. We believe that the pediatric-specific iodine-131 S values (rT ← thyroid) of the ICRP pediatric reference voxel phantoms should be beneficial to improve the dosimetry of pediatric RAI patients.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2022R1C1C100809312 and No. RS-2023-00210289), the Nuclear Safety Research and Development (NSR&D) Program through the Korea Foundation of Nuclear Safety (KoFONS) funded by the Nuclear Safety and Security Commission (NSSC) (Project No. 2203028), Regional Innovation Strategy (RIS) through the NRF funded by the Ministry of Education (MOE) (No. 2022RIS-005), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000070).

참고문헌

  1. E. Ron, M.M. Doody, D.V. Becker, A.B. Brill, R.E. Curtis, M.B. Goldman, B.S. H. Harris III, D.A. Hoffman, W.M. McConahey, H.R. Maxon, S. Preston-Martin, M. E. Warshauer, F.L. Wong, J. Boice John D, For the cooperative thyrotoxicosis therapy follow-up study group, cancer mortality following treatment for adult hyperthyroidism, JAMA 280 (1998) 347-355, https://doi.org/10.1001/jama.280.4.347.
  2. E. Pasqual, S. Schonfeld, L.M. Morton, D. Villoing, C. Lee, A. Berrington de Gonzalez, C.M. Kitahara, Association between Radioactive Iodine Treatment for Pediatric and Young Adulthood Differentiated Thyroid Cancer and Risk of Second Primary Malignancies, JCO, 2022, https://doi.org/10.1200/JCO.21.01841.JCO.21.01841.
  3. S.L. Lutterman, N. Zwaveling-Soonawala, H.J. Verberne, F.A. Verburg, A.P. van Trotsenburg, C.F. Mooij, The efficacy and short-and long-term side effects of radioactive iodine treatment in pediatric Graves' disease: a systematic review, Eur. Thyroid J. 10 (2021) 353-363. https://doi.org/10.1159/000517174
  4. G.H. Seo, K.A. Kong, B.S. Kim, S.Y. Kang, B.S. Moon, H.-J. Yoon, H.O. Kim, Radioactive iodine treatment for children and young adults with thyroid cancer in South Korea: a population-based study, J. Clin. Endocrinol. Metabol. 106 (2021) e2580-e2588. https://doi.org/10.1210/clinem/dgab192
  5. C.M. Kitahara, A. Berrington de Gonzalez, A. Bouville, A.B. Brill, M.M. Doody, D. R. Melo, S.L. Simon, J.A. Sosa, M. Tulchinsky, D. Villoing, D.L. Preston, Association of radioactive iodine treatment with cancer mortality in patients with hyperthyroidism, JAMA Intern. Med. 179 (2019) 1034-1042, https://doi.org/10.1001/jamainternmed.2019.0981.
  6. D.R. Melo, A.B. Brill, P. Zanzonico, P. Vicini, B. Moroz, D. Kwon, S. Lamart, A. Brenner, A. Bouville, S.L. Simon, Organ dose estimates for hyperthyroid patients treated with 131I: an update of the thyrotoxicosis follow-up study, Radiat. Res. 184 (2015) 595-610, https://doi.org/10.1667/RR14160.1.
  7. Y.S. Yeom, B. Shin, C. Choi, H. Han, C.H. Kim, Iodine-131 S values for use in organ dose estimation of Korean patients in radioiodine therapy, Nucl. Eng. Technol. (2021) S1738573321005155, https://doi.org/10.1016/j.net.2021.08.027.
  8. ICRP, Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. ICRP publication 128. Ann, ICRP 44 (2S) (2015).
  9. W.S. Snyder, M.R. Ford, G.G. Warner, E.E. Watson, MIRD Pamphlet No. 11 (Revised): "S" Absorbed Dose Per Unit Cumulated Activity for Selected Radionuclides and Organs, Society of Nuclear Medicine, New York, NY, 1975. https://www.scienceopen.com/document?vid=a0909e6e-4b0b-469bb9c709c8dac3fc37. (Accessed 1 July 2020).
  10. ICRP, Adult reference computational phantoms. ICRP publication 110, Ann. ICRP 39 (2) (2009).
  11. S. Lamart, S.L. Simon, A. Bouville, B.E. Moroz, C. Lee, S values for 131 I based on the ICRP adult voxel phantoms, Radiat. Protect. Dosim. 168 (2016) 92-110, https://doi.org/10.1093/rpd/ncv016.
  12. ICRP, Paediatric computational reference phantoms. ICRP publication 143, Ann. ICRP 49 (1) (2020).
  13. D. Villoing, T.-E. Kwon, E. Pasqual, C.M. Kitahara, C. Lee, Organ dose calculator for diagnostic nuclear medicine patients based on the ICRP reference voxel phantoms and biokinetic models, Biomed. Phys. Eng. Express. 9 (2022) 015004, https://doi.org/10.1088/2057-1976/aca543.
  14. C. Lee, D. Lodwick, J. Hurtado, D. Pafundi, J.L. Williams, W.E. Bolch, The UF family of reference hybrid phantoms for computational radiation dosimetry, Phys. Med. Biol. 55 (2009) 339, https://doi.org/10.1088/0031-9155/55/2/002.
  15. ICRP, Basic anatomical and physiological data for use in radiological protection reference values, ICRP Publication 89. Ann. ICRP 32 (3-4) (2002).
  16. ICRP, Dose coefficients for external exposures to environmental sources. ICRP Publication 144, Ann. ICRP 49 (2) (2020).
  17. ICRP, Specific Absorbed Fractions for Reference Paediatric Individuals, 155, ICRP Publication, 2024. Ann ICRP. In press.
  18. ICRP, The 2007 recommendations of the international commission on radiological protection. ICRP publication 103, Ann. ICRP 37 (2-4) (2007).
  19. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cort'es-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V. N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovi'c, M.G. Pia, W. Pokorski, J. M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Risti'c Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tom'e, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125.
  20. ICRP, Nuclear decay data for dosimetric calculations. ICRP publication 107, Ann. ICRP 38 (3) (2008).
  21. ICRP, Conversion coefficients for radiological protection quantities for external radiation exposures. ICRP publication 116, ann, ICRP 40 (2-5) (2010).
  22. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 6, Newborn, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6202949.
  23. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 2, One-Year-Old, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6203023.
  24. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 3, Five-Year-Old, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6263443.
  25. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 4, Ten-Year-Old, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6233673.
  26. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 5, Fifteen-Year-Old Male and Adult Female, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6263426.
  27. M. Cristy, K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources: 7, Adult Male, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1987, https://doi.org/10.2172/6233638.
  28. Y.S. Yeom, K. Griffin, B. Shin, C. Choi, H. Han, S. Moon, Body-size-dependent iodine-131 S values, J. Radiol. Prot. 40 (2020) 1311-1320, https://doi.org/10.1088/1361-6498/abc053.
  29. G. Jarry, J.J. DeMarco, U. Beifuss, C.H. Cagnon, M.F. McNitt-Gray, A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models, Phys. Med. Biol. 48 (2003) 2645, https://doi.org/10.1088/0031-9155/48/16/306.
  30. C. Lee, A review of organ dose calculation tools for patients undergoing computed tomography scans, J Radiat Prot Res 46 (2021) 151-159, https://doi.org/10.14407/jrpr.2021.00136.