DOI QR코드

DOI QR Code

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad (Nuclear Materials Authority) ;
  • Masoud S. Masoud (Nuclear Materials Authority) ;
  • Mayeen Uddin Khandaker (Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University) ;
  • Mohamed Y. Hanfi (Nuclear Materials Authority)
  • 투고 : 2023.12.19
  • 심사 : 2024.01.23
  • 발행 : 2024.06.25

초록

The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

키워드

참고문헌

  1. K.G. Taylor, P.N. Owens, Sediments in urban river basins: a review of sediment-contaminant dynamics in an environmental system conditioned by human activities, J. Soils Sediments 9 (2009) 281-303, https://doi.org/10.1007/s11368-009-0103-z.
  2. M.Y. Hanfi, I. V Yarmoshenko, A.A. Seleznev, M. V Zhukovsky, The gross beta activity of surface sediment in different urban landscape areas, J Radioanal Nucl Chem 321 (2019) 831-839. https://doi.org/10.1007/s10967-019-06657-9.
  3. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J. Prince Prakash Jebakumar, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach, Mar. Pollut. Bull. 97 (2015) 419-430, https://doi.org/10.1016/j.marpolbul.2015.05.058.
  4. M.Y. Hanfi, B.M. Emad, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, Natural radioactivity in the prospecting tunnel in Egypt: dose rate and risk assessment, Radiat. Phys. Chem. 187 (2021) 109555, https://doi.org/10.1016/j.radphyschem.2021.109555.
  5. UNSCEAR, SOURCES and EFFECTS of IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation, 2010.
  6. A. El-Taher, F. Alshahri, R. Elsaman, Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf, Appl. Radiat. Isot. 132 (2018) 95-104, https://doi.org/10.1016/j.apradiso.2017.11.022.
  7. I. Gaafar, M. Hanfi, L.S. El-Ahll, I. Zeidan, Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt, Appl. Radiat. Isot. 173 (2021) 109734, https://doi.org/10.1016/j.apradiso.2021.109734.
  8. M.Y. Hanfi, Radiological assessment of gamma and radon dose rates at former uranium mining tunnels in Egypt, Environ. Earth Sci. 0 (2019), https://doi.org/10.1007/s12665-019-8089-3.
  9. P. Bala, R. Mehra, R.C. Ramola, Distribution of natural radioactivity in soil samples and radiological hazards in building material of Una, Himachal Pradesh, J. Geochem. Explor. 142 (2014) 11-15, https://doi.org/10.1016/j.gexplo.2014.02.010.
  10. P. Bangotra, R. Mehra, R. Jakhu, K. Kaur, P. Pandit, S. Kanse, Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K, J. Geochem. Explor. 184 (2018) 304-310, https://doi.org/10.1016/j.gexplo.2017.05.002.
  11. S. Forkapic, J. Vasin, I. Bikit, D. Mrdja, K. Bikit, S. Mili, Correlations between soil characteristics and radioactivity content of Vojvodina soil, J. Environ. Radioact. 166 (2017) 104-111, https://doi.org/10.1016/j.jenvrad.2016.04.003.
  12. T. Kovacs, G. Szeiler, F. Fabian, R. Kardos, A. Gregoric, J. Vaupotic, Systematic survey of natural radioactivity of soil in Slovenia, J. Environ. Radioact. 122 (2013) 70-78, https://doi.org/10.1016/j.jenvrad.2013.02.007.
  13. R. Jakhu, R. Mehra, P. Bangotra, K. Kaur, H.M. Mittal, Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon, J. Geochem. Explor. 184 (2018) 296-303, https://doi.org/10.1016/j.gexplo.2017.03.002.
  14. F.C.A. Ribeiro, J.I.R. Silva, E.S.A. Lima, N.M.B. do Amaral Sobrinho, D.V. Perez, D. C. Lauria, Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties, J. Environ. Radioact. 182 (2018) 34-43, https://doi.org/10.1016/j.jenvrad.2017.11.017.
  15. A. Dolhanczuk-Srodka, Estimation of external gamma radiation dose in the area of Bory Stobrawskie forests (PL), Environ. Monit. Assess. 184 (2012) 5773-5779, https://doi.org/10.1007/s10661-011-2380-4.
  16. S. DaPelo, M.M. Aghdam, V. Dentoni, A. Loi, P. Randaccio, Q. Crowley, Assessment of natural radioactivity and radon release potential of silurian black shales, Radiat. Phys. Chem. 215 (2024) 111347, https://doi.org/10.1016/j.radphyschem.2023.111347.
  17. A. Navas, L. Gaspar, M. Lopez-Vicente, J. MacHin, Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees), Radiat. Meas. 46 (2011) 261-269, https://doi.org/10.1016/j.radmeas.2010.11.008.
  18. L. Barbosa da Silva, L. Faria da Silva, C. Omar, P. Orejuela, V.B. Junior, A.X. da Silva, Assessment and estimation of the effective dose due to external exposure from natural radioactivity of sands used in civil construction in the state of Rio de Janeiro,Brazil, Appl. Radiat. Isot. 205 (2024) 111157, https://doi.org/10.1016/j.apradiso.2023.111157.
  19. UNSCEAR, Exposures from natural radiation sources (Annex B), Sources and Effects of Ionizing Radiation (2000) 84-141.
  20. A. Shahrokhi, M. Adelikhah, S. Chalupnik, T. Kovacs, Multivariate statistical approach on the distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece, Mar. Pollut. Bull. 163 (2021), https://doi.org/10.1016/j.marpolbul.2021.112009.
  21. ATSDR, Toxicological Profile for Uranium, Public Health Service, U.S. Department of Health and Human Services, 1999, pp. 1-145.
  22. ATSDR, Draft toxicological profile for radon: agency for toxic substances and disease registry 9-11 (2012) 161-167.
  23. ATSDR, Case Studies in Environmental Medicine, Public Health Service, U.S. Department of Health and Human Services, 1992, pp. 1-28.
  24. M.A. Hilal, M.F. Attallah, G.Y. Mohamed, M. Fayez-hassan, Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production, J. Environ. Radioact. 136 (2014) 121-126, https://doi.org/10.1016/j.jenvrad.2014.05.016.
  25. Y.A. Abdel-Razek, M.S. Masoud, M.Y. Hanfi, M.S. El-Nagdy, Effective radiation doses from natural sources at Seila area South Eastern Desert, Egypt, Journal of Taibah University for Science 10 (2016) 271-280. https://doi.org/10.1016/j.jtusci.2015.06.010.
  26. J.P. Li'egeois, R.J. Stern, Sr-Nd isotopes and geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern Desert, Egypt: No evidence for pre-Neoproterozoic crust, J. Afr. Earth Sci. 57 (2010) 31-40.
  27. N.M. Moghazy, A.M. El-Tohamy, M.M. Fawzy, H.A. Awad, H.M.H. Zakaly, S.A. M. Issa, A. Ene, Natural radioactivity, radiological hazard and petrographical studies on Aswan granites used as building materials in Egypt, Appl. Sci. 11 (2021) 6471, https://doi.org/10.3390/app11146471, 2021.
  28. M.Y. Hanfi, A.E. Abdel Gawad, H. Eliwa, K. Ali, M.I. Sayyed, M.U. Khandaker, D. A. Bradley, Assessment of radioactivity in granitoids at Nikeiba, south Eastern Desert, Egypt; radionuclides concentrations and radiological hazard parameters, Radiat. Phys. Chem. (2022), https://doi.org/10.1016/j.radphyschem.2022.110113.
  29. A.E. Abdel Gawad, E.M. Ibrahim, Activity ratios as a tool for studying uranium mobility at El Sela shear zone, southeastern Desert, Egypt, J. Radioanal. Nucl. Chem. 308 (2016) 129-142.
  30. Y. Amin, M.U. Khandaker, A. Shyen, R. Mahat, R. Nor, D. Bradley, Radionuclide emissions from a coal-fired power plant, Appl. Radiat. Isot. 80 (2013) 109-116.
  31. M.Y.M. Hanfi, M.S. Masoud, M.I. Sayyed, M.U. Khandaker, M.R.I. Faruque, D. A. Bradley, M.Y.A. Mostafa, The presence of radioactive heavy minerals in prospecting trenches and concomitant occupational exposure, PLoS One 16 (2021) e0249329.
  32. C. Breitkreuz, H.A. Eliwa, I.M. Khalaf, Kh ElGameel, B. Buhler, S. Sergeev, A. Larionov, M. Murata, Neoproterozoic SHRIMP U-Pb zircon ages of silica-rich Dokhan volcanics in the North Eastern desert, Egypt, Precambrian Res. 182 (2010) 163-174.
  33. H.A. Eliwa, C. Breitkreuz, I. Khalaf, K. El Gameel, Depositional styles of early ediacaran terrestrial volcano-sedimentary succession in the gebel El Urf area, North Eastern desert, Egypt, J. Afr. Earth Sci. 57 (2010) 328-344.
  34. A.A. Abdel Wahed, K.G. Ali, M.M. Khalil, A.E. Abdel Gawad, Dokhan volcanics of gabal Monqul area, North Eastern desert, Egypt: geochemistry and petrogenesis, Arabian J. Geosci. 5 (2012) 29-44, https://doi.org/10.1007/s12517-010-0136-z.
  35. N.S. Botros, Genesis of gold mineralization in the North Eastern desert, Egypt, Ann. Geol. Surv. Egypt XX (1995) 381-409, 1994-1995.
  36. N.S. Botros, M.A. Wetait, A possible porphyry copper mineralization in South Monqul, Eastern Desert, Egypt, Egypt. J. Geol. 41-1 (1997) 175-196.
  37. A.E. Abdel Gawad, H. Eliwa, K.G. Ali, K. Alsafi, M. Murata, S.M. Masoud, M. Y. Hanfi, Cancer risk assessment and geochemical features of granitoids at nikeiba, southeastern desert, Egypt, Minerals 12 (2022) 621, https://doi.org/10.3390/min12050621.
  38. J.H. Al-Zahrani, Journal of Radiation Research and Applied Sciences Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia, J Radiat Res Appl Sci 10 (2017) 241-245, https://doi.org/10.1016/j.jrras.2017.05.001.
  39. B. Merdano, Radioactivity concentrations and dose assessment for soil samples from kestanbol granite area, Radiat. Protect. Dosim. 121 (2006) 399-405, https://doi.org/10.1093/rpd/ncl055.
  40. IAEA, Preparation and Certification of IAEA Gamma-Ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1, 1987. Iaea-Rl-148 48.
  41. A. Abbasi, Radiation risk assessment of coastal biota from a quasi-Fukushima hypothetical accident in the Mediterranean Sea, Mar. Pollut. Bull. 194 (2023) 115363, https://doi.org/10.1016/j.marpolbul.2023.115363.
  42. A. Papadopoulos, G. Christofides, A. Koroneos, L. Papadopoulou, C. Papastefanou, S. Stoulos, Natural radioactivity and radiation index of the major plutonic bodies in Greece, J. Environ. Radioact. 124 (2013) 227-238, https://doi.org/10.1016/j.jenvrad.2013.06.002.
  43. I.K. Ahmed, H.N.B. Khalaf, F. Ambrosino, et al., Fly ash radiological characterization from thermal power plants in Iraq, J. Radioanal. Nucl. Chem. 329 (2021) 1237-1245, https://doi.org/10.1007/s10967-021-07907-5.
  44. J.J. Heckman, R. Pinto, P.A. Savelyev, Natural elemental concentrations and fluxes: their use as indicators of repository safety, SKI Report 97 (2002) 29, 29 97.
  45. USEPA, EPA Radiogenic Cancer Risk Models and Projections for the, U.S. Population, 2011.
  46. A.A. Qureshi, S. Tariq, U. Kamal, S. Manzoor, C. Calligaris, A. Waheed, ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan, J Radiat Res Appl Sci 7 (2014) 438-447, https://doi.org/10.1016/j.jrras.2014.07.008.
  47. M.J. Abedin, M.R. Karim, M.U. Khandaker, M. Kamal, S. Hossain, M.H.A. Miah, D. A. Bradley, M.R.I. Faruque, M.I. Sayyed, Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment, Radiat. Phys. Chem. 177 (2020) 109165, https://doi.org/10.1016/j.radphyschem.2020.109165.