Acknowledgement
This work was supported by the Korea Foundation Of Nuclear Safety (KOFONS) grant funded by the Nuclear Safety and Security Commission(NSSC), Republic of Korea (Nos. 2106062-0323-SB110 and 2204017-0223-SB110).
References
- W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl, Fault Tree Handbook, U.S. Nuclear Regulatory Commission, NUREG-0492, 1981.
- S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial problems, in: Proceedings of the 30th International Conference on Design Automation, 1993, pp. 272-277.
- W.S. Jung, S.H. Han, J.J. Ha, A fast BDD algorithm for the reliability analysis of large coherent systems, Reliab. Eng. Syst. Saf. 83 (2004) 369-374. https://doi.org/10.1016/j.ress.2003.10.009
- W.S. Jung, ZBDD algorithm features for an efficient probabilistic safety assessment, Nucl. Eng. Des. 239 (2009) 2085-2092. https://doi.org/10.1016/j.nucengdes.2009.05.005
- C.Y. Lee, Representation of switching circuits by binary-decision programs, Bell System Technical Journal 38 (1959) 985-999.
- B. Akers, Binary decision diagrams, IEEE Trans. Comput. C-27 (6) (1978) 509-516. https://doi.org/10.1109/TC.1978.1675141
- R. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. C-35 (8) (1986) 677-691. https://doi.org/10.1109/TC.1986.1676819
- R. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams, ACM Comput. Surv. 24 (1992) 293-318. https://doi.org/10.1145/136035.136043
- A. Rauzy, New algorithms for fault trees analysis, Reliab. Eng. Syst. Saf. 5 (59) (1993) 203-211. https://doi.org/10.1016/0951-8320(93)90060-C
- Y. Duituit, A. Rauzy, Efficient algorithms to assess component and gate importance in fault tree analysis, Reliab. Eng. Syst. Saf. 72 (2001) 213-222. https://doi.org/10.1016/S0951-8320(01)00004-7
- A. Rauzy, BDD for reliability studies, in: K.B. Misra (Ed.), Handbook of Performability Engineering, Elsevier, Amsterdam, The Netherlands, 2008, pp. 381-396.
- R. Remenyte-Prescott, J. Andrews, An enhanced component connection method BDD, Reliab. Eng. Syst. Saf. 93 (2008) 1543-1550. https://doi.org/10.1016/j.ress.2007.09.001
- O. Nusbaumer, A. Rauzy, Fault tree linking versus event tree linking approaches - a reasoned comparison, Journal of Risk and Reliability 227 (2013) 315-326.
- A. Rauzy, L. Yang, Decision diagram algorithms to extract minimal cutsets of finite degradation models, Information 10 (2019) 368.
- W.S. Jung, S.H. Han, J.E. Yang, Fast BDD truncation method for efficient top event probability calculation, Nucl. Eng. Technol. 40 (7) (2008) 571-580. https://doi.org/10.5516/NET.2008.40.7.571
- T. Luo, K.S. Trivedi, An improved algorithm for coherent-system reliability, IEEE Trans. Reliab. 47 (1998) 73-78.
- T. Sasao, Ternary Decision Diagrams and Their Applications, Representations of Discrete Functions, 1996, pp. pp269-292 (Chapter 12).
- T. Sasao, Arithmetic ternary decision diagrams applications and complexity. Proceedings of the Fourth International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, 1999.
- R. Remenyte-Prescott, J. Andrews, Analysis of non-coherent fault trees using ternary decision diagrams, Proc. Inst. Mech. Eng. O J. Risk Reliab. 222 (2) (2008).
- W.S. Jung, A new zero-suppressed ternary decision diagram algorithm, in: Probabilistic Safety Assessment and Management (PSAM) Topical, October 23-25, 2023. Virtual meeting.