
Nuclear Engineering and Technology 56 (2024) 2092–2098

Available online 17 January 2024
1738-5733/© 2024 Korean Nuclear Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Article

Zero-suppressed ternary decision diagram algorithm for solving
noncoherent fault trees in probabilistic safety assessment of nuclear
power plants

Woo Sik Jung
Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 143-747, Republic of Korea

A R T I C L E I N F O

Keywords:
Zero-suppressed ternary decision diagram
Minimal cut sets
Prime implicants

A B S T R A C T

Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants.
In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event
trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by
usual and complemented logic gates representing failed and successful operations of safety systems, respectively.
The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage
fault tree.

Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident
sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF,
particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a
new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by
DTA.

This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any
approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated.

The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algo-
rithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD
application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately
calculate CDF and drastically improve the safety of nuclear power plants.

1. Introduction

1.1. Accident sequence logic

Coherent fault trees comprise basic events related to component
failures and logic gates. By contrast, noncoherent fault trees comprise
complemented basic events or complemented logic gates. Minimal cut
sets (MCSs) are the minimal combinations of failures causing the top
event of a coherent fault tree. Further, prime implicants (PIs) are the
minimal combinations of failures and successes causing the top event of
a noncoherent fault tree. In the probabilistic safety assessment (PSA) of
nuclear power plants, both MCSs and PIs are usually denoted as MCSs.

The PSA of nuclear power plants is performed using event and fault
trees. Each accident sequence in event trees comprises a logical com-
bination of usual and complemented fault trees representing safety
system failures and successes, respectively. Some of them lead to core

damage in nuclear power plants. Because the general Boolean expres-
sion for an accident scenario G3G4…/G7/G8… is identical to
G3G4…/(G7 + G8 + …), it can be expressed as G1/G2, where G1 =

G3G4… and G2 = G7 + G8 + …. Each accident scenario G1/G2 is
inherently a noncoherent fault tree; thus, the expression should be
solved using the appropriate algorithm. This study explains various
ways to solve the accident sequence logic given by Eq. (1).

Top = G1/G2
G1 = bG3
G2 = bG4
G3 = a + c + e
G4 = c + d

(1)

1.2. Approximate solutions by DTA

In PSA, the MCSs of G1 and G2 are separately generated using

E-mail address: woosjung@sejong.ac.kr.

Contents lists available at ScienceDirect

Nuclear Engineering and Technology

journal homepage: www.elsevier.com/locate/net

https://doi.org/10.1016/j.net.2024.01.017
Received 4 August 2023; Received in revised form 8 January 2024; Accepted 13 January 2024

mailto:woosjung@sejong.ac.kr
www.sciencedirect.com/science/journal/17385733
https://www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2024.01.017
https://doi.org/10.1016/j.net.2024.01.017
https://doi.org/10.1016/j.net.2024.01.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2024.01.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nuclear Engineering and Technology 56 (2024) 2092–2098

2093

traditional Boolean algebra [1] or the zero-suppressed binary decision
diagram (ZBDD) algorithm [2–4]. Then, the approximate MCSs of G1/

G2 are generated using delete-term approximation (DTA) [4], which
compares the MCSs of G1 and G2 and deletes some nonlogical MCSs of
G1. Then, the core damage frequency (CDF) is calculated from the
approximate MCSs. Here, MCSs and factorized MCSs are calculated
using traditional Boolean algebra and the ZBDD algorithm, respectively.

The DTA procedure for calculating the approximate MCSs of G1/ G2
in Eq. (1) is given by Eq. (2) and presented in Table 1. Among the MCSs
of G1, i.e., ab, bc, and be, bc is deleted since it results in false G1/ G2, and
ab and be are captured as final approximate MCSs of G1/ G2 since they do
not result in false G1/G2. In other words, DTA removes the subset MCSs
in G1 that have a superset MCS in G2. The DTA is always performed one
time with the MCSs of G1 and G2 at the top event. In other words, the
DTA is not performed at the child gates of the top event.

G1 = ab + bc + be
G2 = bc + bd
G1/G2 ≅ Delterm(G1,G2) = ab + be

(2)

1.3. Accurate solutions and probabilities

First, a solution of a binary decision diagram (BDD) [5–15] for G1/

G2 can be directly calculated from the fault tree in Eq. (1) with the BDD
algorithm [7–9], and the accurate probability p(G1 /G2) is calculated
with this BDD. However, the BDD calculation frequently fails for large
fault trees in PSA. The structure and algorithm of ternary decision dia-
gram (TDD) [17–19] are variation of the BDD structure and algorithm
(see Section 1.5).

Second, Boolean solutions of G1/G2 are generated as Eq. (3) from the
fault tree in Eq. (1) without any approximation by the traditional
Boolean algebra. However, the Boolean complement of G2 frequently
fails depending on the size of the fault tree for G2.

G1 = ab + bc + be
G2 = bc + bd
/G2 = /(bc + bd) = (/b + /c)(/b + /d) = /b + /c/d
G1/G2 = (ab + bc + be)(/b + /c/d) = ab/c/d + b/c/de

(3)

Then, the solutions of G1/G2 in Eq. (3) are converted into a BDD
[5–15] or sum-of-disjoint products (SDPs) [16], and the accurate prob-
ability p(G1 /G2) is calculated with the BDD or SDPs. Since the Boolean
solutions in Eq. (3), ab/c/d and b/c/de, are not disjoint, they are con-
verted into SDPs of ab/c/d and /ab/c/de using Eq. (4). The probability
p(G1 /G2) is calculated by simply adding the probabilities of SDPs.

G1/G2 = ab/c/d + /(ab/c/d)b/c/de
= ab/c/d + (/a + a/b + abc + ab/cd)b/c/de
= ab/c/d + /ab/c/de
p(G1/G2) = p(ab/c/d) + p(/ab/c/de)

(4)

1.4. Comparison of approximate and accurate solutions

As listed in Table 2, three probabilities of rare event approximation
(REA) probabilities, min-cut-upper bound (MCUB) probabilities, and
SDP probabilities are calculated from ab + be and ab/c/d + b/c/de in
Eqs. (2) and (3). As summarized by Eq. (5), Table 2 clearly shows that
the three probabilities of G1/G2 in Eq. (2) are drastically overestimated
when the accident sequence logic has nonrare events, such as seismic
events. Thus, CDF can be extremely overestimated by DTA when fault
trees have many nonrare events.

p(ab + de) ≅ p(ab/c/d + b/c/de) for rare events in internal PSA
p(ab + de)≫p(ab/c/d + b/c/de) for nonrare events in seismic PSA (5)

1.5. ZBDD, BDD, and TDD algorithms

Arbitrary Boolean equations can be encoded into ZBDD [2–4], BDD
[5–15], or TDD [17–19] in Table 3. When a fault tree is solved in a
bottom-up way, two ZBDDs, BDDs, and TDDs are combined with ZBDD
[3,4], BDD [7,8], and TDD [17–19] algorithms, respectively. These
ZBDD and BDD structures and algorithms provide efficient calculation of
fault trees. As presented in Table 3, The TDD structure is a simple
variation of BDD.

Bryant popularized the use of BDD by developing the BDD algorithm
to efficiently construct and manipulate BDDs [7,8]. The BDD algorithm
has been employed for reliability analysis [9], and the use of BDDs to
solve large fault trees and importance measures has been investigated
[10–14]. The BDD algorithm calculates an exact top event probability
since it does not employ any approximations such as DTA. However, the
BDD algorithm frequently fails to solve large fault trees. BDD truncation

Table 1
Delete-term approximation.

MCS of G1 True events G1 G2 G1/G2 MCS of G1/G2

ab a and b True Indefinite Indefinite Yes
bc b and c True Truea False No
be b and e True Indefinite Indefinite Yes

a G2 is true when b and c are true.

Table 2
Comparison of p(ab+de) and p(ab /c /d + b /c /de).

Event probabilitya Solution REA probability MCUB probability SDP probability Overestimation

1.0E-03 ab+ be 2.00E-06b 2.00E-06d 2.00E-06f 0.2 %h

ab/c/d+ b/c/de 2.00E-06c 2.00E-06e 2.00E-06g

1.0E-01 ab+ be 2.00E-02 1.99E-02 1.90E-02 23.5 %
ab/c/d+ b/c/de 1.62E-02 1.61E-02 1.54E-02

5.0E-01 ab+ be 5.00E-01 4.38E-01 3.75E-01 300.0 %
ab/c/d+ b/c/de 1.25E-01 1.21E-01 9.38E-02

9.0E-01 ab+ be 1.62E-00 9.64E-01 8.91E-01 9900.0 %
ab/c/d+ b/c/de 1.62E-02 1.61E-02 8.91E-03

a p(a) = … = p(e).
b p(ab)+ p(be).
c p(ab /c /d)+ p(b /c /de).
d 1 − (1 − p(ab))(1 − p(be)).
e 1 − (1 − p(ab /c /d))(1 − p(b /c /de)).
f p(ab) + p(/abe) by ab+ be = ab+ /(ab)be = ab+ (/a + a /b)be = ab+ /abe.
g p(ab /c /d) + p(/ab /c /de) by Eq. (4).
h
((f) − (g))/(g) ∗ 100 %.

W.S. Jung

Nuclear Engineering and Technology 56 (2024) 2092–2098

2094

during the solving of a fault tree was impossible before the development
of the BDD truncation algorithm [15].

1.6. Objectives and structure of the paper

The complemented logic gate of /G2 can be solved using the Boolean
complement of ZBDD in Eq. (6), and two ZBDDs for G1 and / G2 can be
combined to generate the exact solutions of G1/G2. However, it is not
practically used since the simultaneous encoding of x and / x in ZBDD is
very complex and drastically increases the computational burden
depending on the number of complemented events. Thus, a noncoherent
fault tree is solved using the ZBDD algorithm with DTA instead of the
exact calculation of G1/G2. Owing to the use of DTA, the seismic CDF is
drastically overestimated since the seismic PSA model has many nonrare
events as explained in Section 1.4.

/ < x, L,R>ZBDD =< x, /L/R, < /x, /R, 0 > >ZBDD
/(xL + R) = /(xL)/R = (/x + x/L)/R = /x/R + x/L/R (6)

Although the ZBDD algorithm is a successful replacement of tradi-
tional Boolean algebra, generating the accurate solution of G1/ G2 is a
practically impossible task. This was a motivation for developing the
zero-suppressed ternary decision diagram (ZTDD) algorithm [20]. The
ZTDD algorithm was developed by the author of this paper, and it was
very briefly introduced in Ref. 20.

This study introduces the ZTDD algorithm and its features that were
developed for efficiently solving noncoherent fault trees in PSA. By using
the ZTDD algorithm, (1) the approximate solution is calculated by DTA
or (2) the accurate solution can be calculated without DTA.

The remainder of this paper is structured as follows. The ZTDD
structure, formula of the ZTDD algorithm, deletion of the nonminimal
solutions in ZTDD, DTA with the ZTDD algorithm, and probability
calculation of ZTDD are explained in Section 2. The strength of the ZTDD
Algorithm is summarized in Section 3. Furthermore, the results of ap-
plications to a sample and PSA fault trees that demonstrate the efficiency
of the ZTDD algorithm are summarized in Sections 4 and 5. Finally,
conclusions are provided in Section 6.

2. ZTDD structure and algorithm

In this section, the ZTDD algorithm is introduced. The ZTDD algo-
rithm has two major strengths: (1) It can calculate a solution of G1/ G2
without DTA (see Sections 2.2 and 2.3). (2) It can calculate approximate
solutions of G1/G2 with DTA (see Sections 2.2 and 2.5).

2.1. ZTDD structure

ZTDD is newly defined for encoding the factorized MCSs or PIs that
have complemented basic events. ZTDD has a Boolean structure that
comprises recursively connected if-then-else connectives (ITEs) that
have three terms of L, R, and N as given by Eq. (7). ZTDD encodes the
Boolean equation xL + /xR + N into three Boolean equations as xL, / xR,
and N, where L, R, and N are child ZTDDs. The ZTDD can be interpreted
as a factorized form of MCSs or PIs.

xL+ /xR + N =< x, L,R,N > (7)

The ZTDD in Eq. (7) can be encoded into BDD through Eq. (8) or
converted into two connected ZBDDs through Eq. (9). Clearly, the ZTDD
in Eq. (7) is much more intuitive and simpler than the BDD and ZBDD in
Eqs. (8) and (9).

xL+ /xR + N = xL + /xR + (x+ / x)N = < x, L + N,R + N>BDD (8)

xL+ /xR + N =< x, L, < /x,R,N > >ZBDD (9)

2.2. ZTDD algorithm

To solve a fault tree in a bottom-up way, two ZTDDs need to be
combined in a logical manner. In this study, a set of ZTDD formulae are
developed for combining two ZTDDs as given by Eq. (10). If x and y are
two variables with a given variable ordering x < y, x is located at a higher
position in ZTDD than y. Thereafter, the ZTDD combining operation with
G(x) =< x, L1,R1,N1 > and H(y) =< y, L2,R2,N2 > is recursively per-
formed from top to bottom ITEs following Eq. (10). Thus, a coherent or
noncoherent fault tree can be solved in a bottom-up way using Eq. (10).

G(x)⋅H(x) =< x, (L1L2 + L1N2 + N1L2), (R1R2 + R1N2 + N1R2),N1N2 >

G(x) + H(x) =< x, (L1 + L2), (R1 + R2), (N1 + N2) >

G(x)⋅H(y) =< x, L1H,R1H,N1H >

G(x) + H(y) =< x, L1,R1, (N1 + H) >

(10)

2.3. ZTDD for Boolean complement

Eq. (11) displays the Boolean complement of ZTDD. Here, the
Boolean complements /(xL) = /x + x/L and /(/xR) = x + /x/R are
applied instead of /(xL) = /x + /L and /(/xR) = x + /R to maintain
disjoint solutions as much as possible. To calculate the accurate solu-
tions of G1/G2, the ZTDD of G2 is complemented into /G2 by Eq. (11) and
the two ZTDDs of G1 and /G2 are combined using Eq. (10).

/ < x, L,R,N >=< x, /L/N, /R/N, 0 >

/(xL + /xR + N) = (/x + x/L)(x + /x/R)/N = x/L/N + /x/R/N (11)

2.4. ZTDD minimization

When a fault tree is solved in a bottom-up way using Eq. (10), non-
minimal solutions (subsets) are introduced in ZTDD, and they need to be
deleted. These nonminimal solutions exist in the L and R of < α, L,R,N >

since ZTDD is αL+ /αR+ N. The subsets in L and R are deleted if their
minimal solutions (supersets) exist in N, through the Subsume(L,N) and
Subsume(R,N) operations in Eq. (12).

Subsume(G,H)=G\H=

⎧
⎪⎪⎨

⎪⎪⎩

G\N2 ,x>y

<x,L1\H,R1\H,N1\H> ,x<y

<x,L1\(L2 orN2),R1\(R2 orN2),N1\N2 > ,x=y

G(x)=<x,L1,R1,N1 >=xL1+/xR1+N1

H(y)=<y,L2,R2,N2 >=yL2+/yR2+N2

(12)

The term L1\(L2 orN2) denotes that each solution in L1 is tested and

Table 3
Comparison of BDD, TDD, and ZBDD algorithms.

Algorithm Encoding Solutions

ZBDDa < x,L,R>ZBDD = xL+ R Factorized MCSs
BDDb < x,L,R>BDD = xL+ /xR Disjoint solutions
TDDc < x,L,R,LR>TDD = xL+ /xR+ LR Variation of BDD

a For mainly solving coherent fault trees.
b For mainly solving noncoherent fault trees.
c < x,L,R,LR>TDD = xL+ /xR+ LR = x(L + LR)+ /x(R + LR) = xL+ /xR = < x,L,R>BDD.

W.S. Jung

Nuclear Engineering and Technology 56 (2024) 2092–2098

2095

deleted if L2 or N2 has a superset.

2.5. ZTDD for DTA

To calculate the approximate solutions of G1/G2, DTA is employed. It
is accomplished through the subsuming operation given by Eq. (13).

G1 /G2 ≈Delterm(G1,G2)= Subsume(G1,G2) (13)

2.6. ZTDD probability calculation

First, the sum of PI probabilities is calculated by recursively calcu-
lating the probability given by Eq. (14) from the bottom to top of the
ZTDD.

p(f)= px × p(L)+ (1 − px)× p(R) + p(N) (14)

Second, the MCUB probability of PIs can be optionally calculated by
navigating all minimal solutions in the ZTDD. Third, the exact proba-
bility can be calculated from BDD by converting the ZTDD into BDD if
necessary (see Eq. (8)).

3. Strength of the ZTDD algorithm

Both ZTDD and ZBDD algorithms can generate MCSs from coherent
and noncoherent fault trees. However, the ZBDD algorithm aims to solve
coherent fault trees. When a ZBDD algorithm solves a noncoherent fault
tree, complemented basic events should be converted into temporary
basic events such as /x = xnot as listed in Table 4. Owing to this con-
version, the Boolean equations x/x = 0 and x + /x = 1 cannot be
applied during MCS generation of logic gates in a bottom-up way, and
they are applied at the final stage after generating MCSs of a top event.
For this reason, MCS generation becomes very explosive when a fault
tree has many complemented events and logic gates. This is a serious
limitation of a ZBDD algorithm.

As listed in Table 5, the Boolean equations of x/x, x+ / x, and / (xy)
can be directly solved with the ZTDD algorithm without the substitution
of /x = xnot and /y = ynot. This is a great strength of the ZTDD algorithm
over the ZBDD algorithm when a fault tree has many complemented
events and logic gates.

4. ZTDD application to sample fault tree

4.1. ZTDD algorithm without DTA

The fault tree in Eq. (1) is solved in a bottom-up way with the ZTDD
algorithm in Eq. (10) and Boolean complement in Eq. (11). The resultant
ZTDDs for G1, G2, and /G2 are depicted in Figs. 1–3. By combining the
two ZTDDs of G1 and /G2, the ZTDD for G1/G2 is calculated as shown in

Fig. 4.
The ZTDD shown in Fig. 4 can be converted into the BDD shown in

Fig. 5. This BDD is identical to the SDPs in Eq. (4). In other words, the

Table 4
Examples of ZBDD Boolean operations.

Boolean equations ZBDD Boolean operations (see Appendix A)

x/ x < x,1,0 > < xnot ,1,0 >= < x,< xnot ,1,0 >,0 >a

x+ / x < x,1,0 > + < xnot ,1,0 >= < x,1,< xnot ,1,0≫a

/ (xy) Impossible encoding

a x/x = 0 and x + /x = 1 cannot be applied during MCS generation.

Table 5
Examples of ZTDD Boolean operations.

Boolean equations ZTDD Boolean operations (see Eqs. (10) and (11))

x/ x < x,1,0,0 > < x,0,1,0 >= < x,0,0,0 >= 0
x+ / x < x,1,0,0 > + < x,0,1,0 >= < x,1,1,0 >= 1
/ (xy) / < x,< y,1,0,0 >,0,0 >= < x, / < y,1,0,0 >,1,0 >

= < x,< y,0,1,0 >,1,0 >= /x+ x/y

Fig. 1. ZTDD for G1

G1 = < a, < b,1, 0,0 >, 0, < b, < c, 1,0, < e,1, 0,0≫, 0, 0≫
Identical to G1 = ab + bc + be in Eq. (3).

Fig. 2. ZTDD for G2

G2 = < b, < c,1, 0, < d,1, 0,0≫, 0, 0 >

Identical to G2 = bc + bd in Eq. (3).

W.S. Jung

Nuclear Engineering and Technology 56 (2024) 2092–2098

2096

BDD that is converted from the ZTDD is identical to the BDD that is
directly calculated from G1/G2.

4.2. ZTDD algorithm with DTA

The ZTDD that is generated from G1/G2 by the ZTDD algorithm with
DTA in Eqs. (10) and (13) is depicted in Fig. 6. It can be confirmed that
the ZTDD in Fig. 6 is identical to the Boolean equation in Eq. (2).

Fig. 3. ZTDD for /G2

/G2 = < b, < c,0, < d,0, 1,0 >, 0 >, 1, 0 >

Identical to /G2 = /b + /c/d in Eq. (3).

Fig. 4. ZTDD without DTA for G1/G2

Identical to G1/G2 = ab/c/d + b/c/de in Eq. (3).

Fig. 5. BDD for G1/G2

Identical to G1/G2 = ab/c/d + /ab/c/de in Eq. (4).

Fig. 6. ZTDD with DTA for Delterm(G1,G2)

Identical to Delterm(G1,G2) = ab + be in Eq. (2).

W.S. Jung

Nuclear Engineering and Technology 56 (2024) 2092–2098

2097

5. ZTDD application to PSA fault trees

The ZTDD algorithm in Section 2 was implemented in a new tool
named ZEBRA (ZTDD Equation Based Risk Analyzer), and its perfor-
mance was compared with that of the fault tree solver FTREX (Fault Tree
Reliability Evaluation eXpert), which employs the ZBDD algorithm [3,
4]. With the large fault trees in Table 6, calculations were performed
using FTREX and ZEBRA with DTA by employing the calculation options
in Table 7. The calculation results presented in Tables 8–11 reveal that
ZEBRA outperforms FTREX in solving large fault trees.

6. Conclusions

In this paper, a novel algorithm, the ZTDD algorithm, and its features
are introduced. The algorithm was developed to avert the CDF over-
estimation caused by DTA. Further, the solving of noncoherent fault
trees with the ZTDD algorithm is elucidated. The use of the ZTDD al-
gorithm for the PSA of nuclear power plants is strongly recommended.
The results of this study can be summarized as follows.

(1) The ZTDD algorithm can calculate a solution of G1/G2 without
DTA (Sections 2.2 and 2.3). If this ZTDD is converted into BDD, it
is identical to the BDD that is directly calculated from G1/G2.
Thus, the extreme overestimation of p(G1 /G2) can be avoided
using the proposed ZTDD algorithm.

(2) The ZTDD algorithm can calculate the approximate solution of
G1/G2 with DTA (Sections 2.2 and 2.5). This ZTDD is identical to
the ZBDD that is directly calculated from G1/G2 with DTA. In
order to calculate the solution of a noncoherent fault tree using
the ZBDD algorithm, /x needs to be replaced with a temporary
basic event. Hence, the size of ZBDD exponentially increases
when many completed basic events are present (Section 5).

(3) The ZTDD algorithm can solve a noncoherent fault tree
comprising many complemented basic events with or without
DTA, which is advantageous. Furthermore, the ZTDDs of logic
gates maintain a minimal size when a fault tree is solved in a
bottom-up way since a ZTDD simultaneously encodes three
Boolean logics that have x, /x, and nothing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by the Korea Foundation Of Nuclear Safety
(KOFONS) grant funded by the Nuclear Safety and Security Commission

Table 6
PSA fault trees.

Fault trees Gates Events /Gatesa /Eventsb Initiators

Loss of offsite power
multi-unit PSA

138,381 24,843 316 9 95

Seismic multi-unit PSA 67,131 19,096 195 0 13
Low power and

shutdown PSA
50,220 11,801 4,475 2 45

Internal PSA 8,175 3,982 172 13 17

a Complemented gates.
b Complemented events.

Table 7
Calculation options.

Calculations Parallel
computing

Local
DTAa

Local mutually exclusive event
deletionb

C1
C2 O O
C3 O
C4 O O O

a Although the DTA is always performed one time with the MCSs of a top event
by G1/G2 ≅ Delterm(G1, G2), it can be applied at any child logic gate by G1/

G2 ≅ Delterm(G1,G2)/G2.
b The complemented gate /G2 of G1/G2 for mutually exclusive event deletion

can be additionally connected to the child gates of G1 before solving a fault tree.

Table 8
Calculation of loss of offsite power multi-unit PSA (seconds).

Truncation limit 1.00E-11 1.00E-12 1.00E-13
MCSs 154,937 674,332 2,734,715
FTREX 2.0 C1 28 224 1,972

C2 34 145 2,250
ZEBRA 1.0 C1 14 45 199

C2 12 29 88

Table 9
Calculation of seismic multi-unit PSA (seconds).

Truncation limit 1.00E-11 1.00E-12 1.00E-13
MCSs 18,173 85,133 410,261
FTREX 2.0 C1 9 45 303

C2 5 20 107
ZEBRA 1.0 C1 5 18 112

C2 4 6 15

Table 10
Calculation of low power and shutdown PSA (seconds).

Truncation limit 1.00E-09 1.00E-10 1.00E-11
MCSs 3,100 25,174 170,963
FTREX 2.0 C1 16 49 630

C2 15 43 341
ZEBRA 1.0 C1 36 150 581

C2 24 74 218
C3 18 84 357
C4 9 28 86

Table 11
Calculation of internal PSA (seconds).

Truncation limit 1.00E-15 1.00E-16 1.00E-17
MCSs 1,359,385 4,494,871 14,139,375
FTREX 2.0 C1 23 55 127

C2 33 76 180
ZEBRA 1.0 C1 34 71 173

C2 22 65 157
C3 20 46 114
C4 18 43 105

W.S. Jung

Nuclear Engineering and Technology 56 (2024) 2092–2098

2098

(NSSC), Republic of Korea (Nos. 2106062-0323-SB110 and 2204017- 0223-SB110).

Appendix A. ZBDD algorithm

The Boolean combination of G(x) =< x, L1,R1 > and H(y) =< y, L2,R2 > is formulated as Eq. (A.1) [3,4]. Here, x < y, g = G(x) and h = H(y). That
is, the variable x is located at a higher position in ZBDD than variable y.

G(x)⋅H(x) =< x, (L1L2 + L1R2 + R1L2),R1R2 >

G(x) + H(x) =< x, (L1 + L2), (R1 + R2) >

G(x)⋅H(y) =< x, L1h,R1h >

G(x) + H(y) =< x, L1, (R1 + h) >

(A.1)

When ab + abc is located in a ZBDD, abc is a subset of ab. Specifically, ab and abc are minimal and nonminimal solutions, respectively. Therefore,
abc should be deleted (subsumed). When a fault tree is solved in a bottom-up way with Eq. (A.1), nonminimal solutions in the ZBDD of each logic gate
should be deleted.

When a ZBDD has < α,G(x),H(y) >, the nonminimal solutions exist in G(x) since it is αG(x)+ H(y). The subsuming operation is derived as Eq. (A.2).

Subsume(G,H) = G\H =

⎧
⎪⎪⎨

⎪⎪⎩

G\R2 , x > y

< x, L1\H,R1\H > , x < y

< x, L1\(L2 or R2),R1\R2 > , x = y

G(x) =< x, L1,R1 >= xL1 + R1

H(y) =< y, L2,R2 >= yL2 + R2

(A.2)

where the term L1\(L2 or R2) in the last case indicates that each solution in L1 is tested and deleted if L2 or R2 has its minimal solution.
If a fault tree has a logical combination of G1/G2, it is approximated by DTA. Nonminimal solutions in G1 are deleted if minimal solutions are in G2.

Then, the remaining solutions of G1 become the final solutions.

G1 /G2 ≈ Subsume(G1,G2) (A.3)

References

[1] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl, Fault Tree Handbook, U.S.
Nuclear Regulatory Commission, NUREG-0492, 1981.

[2] S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial problems,
in: Proceedings of the 30th International Conference on Design Automation, 1993,
pp. 272–277.

[3] W.S. Jung, S.H. Han, J.J. Ha, A fast BDD algorithm for the reliability analysis of
large coherent systems, Reliab. Eng. Syst. Saf. 83 (2004) 369–374.

[4] W.S. Jung, ZBDD algorithm features for an efficient probabilistic safety assessment,
Nucl. Eng. Des. 239 (2009) 2085–2092.

[5] C.Y. Lee, Representation of switching circuits by binary-decision programs, Bell
System Technical Journal 38 (1959) 985–999.

[6] B. Akers, Binary decision diagrams, IEEE Trans. Comput. C-27 (6) (1978) 509–516.
[7] R. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans.

Comput. C-35 (8) (1986) 677–691.
[8] R. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams,

ACM Comput. Surv. 24 (1992) 293–318.
[9] A. Rauzy, New algorithms for fault trees analysis, Reliab. Eng. Syst. Saf. 5 (59)

(1993) 203–211.
[10] Y. Duituit, A. Rauzy, Efficient algorithms to assess component and gate importance

in fault tree analysis, Reliab. Eng. Syst. Saf. 72 (2001) 213–222.

[11] A. Rauzy, BDD for reliability studies, in: K.B. Misra (Ed.), Handbook of
Performability Engineering, Elsevier, Amsterdam, The Netherlands, 2008,
pp. 381–396.

[12] R. Remenyte-Prescott, J. Andrews, An enhanced component connection method
BDD, Reliab. Eng. Syst. Saf. 93 (2008) 1543–1550.

[13] O. Nusbaumer, A. Rauzy, Fault tree linking versus event tree linking approaches - a
reasoned comparison, Journal of Risk and Reliability 227 (2013) 315–326.

[14] A. Rauzy, L. Yang, Decision diagram algorithms to extract minimal cutsets of finite
degradation models, Information 10 (2019) 368.

[15] W.S. Jung, S.H. Han, J.E. Yang, Fast BDD truncation method for efficient top event
probability calculation, Nucl. Eng. Technol. 40 (7) (2008) 571–580.

[16] T. Luo, K.S. Trivedi, An improved algorithm for coherent-system reliability, IEEE
Trans. Reliab. 47 (1998) 73–78.

[17] T. Sasao, Ternary Decision Diagrams and Their Applications, Representations of
Discrete Functions, 1996, pp. pp269–292 (Chapter 12).

[18] T. Sasao, Arithmetic ternary decision diagrams applications and complexity.
Proceedings of the Fourth International Workshop on Applications of the Reed-
Muller Expansion in Circuit Design, 1999.

[19] R. Remenyte-Prescott, J. Andrews, Analysis of non-coherent fault trees using
ternary decision diagrams, Proc. Inst. Mech. Eng. O J. Risk Reliab. 222 (2) (2008).

[20] W.S. Jung, A new zero-suppressed ternary decision diagram algorithm, in:
Probabilistic Safety Assessment and Management (PSAM) Topical, October 23-25,
2023. Virtual meeting.

W.S. Jung

http://refhub.elsevier.com/S1738-5733(24)00018-4/sref1
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref1
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref2
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref2
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref2
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref3
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref3
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref4
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref4
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref5
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref5
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref6
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref7
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref7
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref8
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref8
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref9
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref9
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref10
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref10
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref11
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref11
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref11
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref12
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref12
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref13
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref13
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref14
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref14
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref15
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref15
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref16
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref16
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref17
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref17
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref18
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref18
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref18
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref19
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref19
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref20
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref20
http://refhub.elsevier.com/S1738-5733(24)00018-4/sref20

