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A B S T R A C T   

Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants. 
In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event 
trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by 
usual and complemented logic gates representing failed and successful operations of safety systems, respectively. 
The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage 
fault tree. 

Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident 
sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF, 
particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a 
new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by 
DTA. 

This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any 
approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated. 

The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algo-
rithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD 
application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately 
calculate CDF and drastically improve the safety of nuclear power plants.   

1. Introduction 

1.1. Accident sequence logic 

Coherent fault trees comprise basic events related to component 
failures and logic gates. By contrast, noncoherent fault trees comprise 
complemented basic events or complemented logic gates. Minimal cut 
sets (MCSs) are the minimal combinations of failures causing the top 
event of a coherent fault tree. Further, prime implicants (PIs) are the 
minimal combinations of failures and successes causing the top event of 
a noncoherent fault tree. In the probabilistic safety assessment (PSA) of 
nuclear power plants, both MCSs and PIs are usually denoted as MCSs. 

The PSA of nuclear power plants is performed using event and fault 
trees. Each accident sequence in event trees comprises a logical com-
bination of usual and complemented fault trees representing safety 
system failures and successes, respectively. Some of them lead to core 

damage in nuclear power plants. Because the general Boolean expres-
sion for an accident scenario G3G4…/G7/G8… is identical to 
G3G4…/(G7 + G8 + …), it can be expressed as G1/G2, where G1 =

G3G4… and G2 = G7 + G8 + …. Each accident scenario G1/G2 is 
inherently a noncoherent fault tree; thus, the expression should be 
solved using the appropriate algorithm. This study explains various 
ways to solve the accident sequence logic given by Eq. (1). 

Top = G1/G2
G1 = bG3
G2 = bG4
G3 = a + c + e
G4 = c + d

(1)  

1.2. Approximate solutions by DTA 

In PSA, the MCSs of G1 and G2 are separately generated using 
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traditional Boolean algebra [1] or the zero-suppressed binary decision 
diagram (ZBDD) algorithm [2–4]. Then, the approximate MCSs of G1/

G2 are generated using delete-term approximation (DTA) [4], which 
compares the MCSs of G1 and G2 and deletes some nonlogical MCSs of 
G1. Then, the core damage frequency (CDF) is calculated from the 
approximate MCSs. Here, MCSs and factorized MCSs are calculated 
using traditional Boolean algebra and the ZBDD algorithm, respectively. 

The DTA procedure for calculating the approximate MCSs of G1/ G2 
in Eq. (1) is given by Eq. (2) and presented in Table 1. Among the MCSs 
of G1, i.e., ab, bc, and be, bc is deleted since it results in false G1/ G2, and 
ab and be are captured as final approximate MCSs of G1/ G2 since they do 
not result in false G1/G2. In other words, DTA removes the subset MCSs 
in G1 that have a superset MCS in G2. The DTA is always performed one 
time with the MCSs of G1 and G2 at the top event. In other words, the 
DTA is not performed at the child gates of the top event. 

G1 = ab + bc + be
G2 = bc + bd
G1/G2 ≅ Delterm(G1,G2) = ab + be

(2)  

1.3. Accurate solutions and probabilities 

First, a solution of a binary decision diagram (BDD) [5–15] for G1/

G2 can be directly calculated from the fault tree in Eq. (1) with the BDD 
algorithm [7–9], and the accurate probability p(G1 /G2) is calculated 
with this BDD. However, the BDD calculation frequently fails for large 
fault trees in PSA. The structure and algorithm of ternary decision dia-
gram (TDD) [17–19] are variation of the BDD structure and algorithm 
(see Section 1.5). 

Second, Boolean solutions of G1/G2 are generated as Eq. (3) from the 
fault tree in Eq. (1) without any approximation by the traditional 
Boolean algebra. However, the Boolean complement of G2 frequently 
fails depending on the size of the fault tree for G2. 

G1 = ab + bc + be
G2 = bc + bd
/G2 = /(bc + bd) = (/b + /c)(/b + /d) = /b + /c/d
G1/G2 = (ab + bc + be)(/b + /c/d) = ab/c/d + b/c/de

(3) 

Then, the solutions of G1/G2 in Eq. (3) are converted into a BDD 
[5–15] or sum-of-disjoint products (SDPs) [16], and the accurate prob-
ability p(G1 /G2) is calculated with the BDD or SDPs. Since the Boolean 
solutions in Eq. (3), ab/c/d and b/c/de, are not disjoint, they are con-
verted into SDPs of ab/c/d and /ab/c/de using Eq. (4). The probability 
p(G1 /G2) is calculated by simply adding the probabilities of SDPs. 

G1/G2 = ab/c/d + /(ab/c/d)b/c/de
= ab/c/d + (/a + a/b + abc + ab/cd)b/c/de
= ab/c/d + /ab/c/de
p(G1/G2) = p(ab/c/d) + p(/ab/c/de)

(4)  

1.4. Comparison of approximate and accurate solutions 

As listed in Table 2, three probabilities of rare event approximation 
(REA) probabilities, min-cut-upper bound (MCUB) probabilities, and 
SDP probabilities are calculated from ab + be and ab/c/d + b/c/de in 
Eqs. (2) and (3). As summarized by Eq. (5), Table 2 clearly shows that 
the three probabilities of G1/G2 in Eq. (2) are drastically overestimated 
when the accident sequence logic has nonrare events, such as seismic 
events. Thus, CDF can be extremely overestimated by DTA when fault 
trees have many nonrare events. 

p(ab + de) ≅ p(ab/c/d + b/c/de) for rare events in internal PSA
p(ab + de)≫p(ab/c/d + b/c/de) for nonrare events in seismic PSA (5)  

1.5. ZBDD, BDD, and TDD algorithms 

Arbitrary Boolean equations can be encoded into ZBDD [2–4], BDD 
[5–15], or TDD [17–19] in Table 3. When a fault tree is solved in a 
bottom-up way, two ZBDDs, BDDs, and TDDs are combined with ZBDD 
[3,4], BDD [7,8], and TDD [17–19] algorithms, respectively. These 
ZBDD and BDD structures and algorithms provide efficient calculation of 
fault trees. As presented in Table 3, The TDD structure is a simple 
variation of BDD. 

Bryant popularized the use of BDD by developing the BDD algorithm 
to efficiently construct and manipulate BDDs [7,8]. The BDD algorithm 
has been employed for reliability analysis [9], and the use of BDDs to 
solve large fault trees and importance measures has been investigated 
[10–14]. The BDD algorithm calculates an exact top event probability 
since it does not employ any approximations such as DTA. However, the 
BDD algorithm frequently fails to solve large fault trees. BDD truncation 

Table 1 
Delete-term approximation.  

MCS of G1 True events G1 G2 G1/G2 MCS of G1/G2 

ab a and b True Indefinite Indefinite Yes 
bc b and c True Truea False No 
be b and e True Indefinite Indefinite Yes  

a G2 is true when b and c are true.  

Table 2 
Comparison of p(ab+de) and p(ab /c /d + b /c /de).  

Event probabilitya Solution REA probability MCUB probability SDP probability Overestimation 

1.0E-03 ab+ be 2.00E-06b 2.00E-06d 2.00E-06f 0.2 %h 

ab/c/d+ b/c/de 2.00E-06c 2.00E-06e 2.00E-06g  

1.0E-01 ab+ be 2.00E-02 1.99E-02 1.90E-02 23.5 % 
ab/c/d+ b/c/de 1.62E-02 1.61E-02 1.54E-02  

5.0E-01 ab+ be 5.00E-01 4.38E-01 3.75E-01 300.0 % 
ab/c/d+ b/c/de 1.25E-01 1.21E-01 9.38E-02  

9.0E-01 ab+ be 1.62E-00 9.64E-01 8.91E-01 9900.0 % 
ab/c/d+ b/c/de 1.62E-02 1.61E-02 8.91E-03   

a p(a) = … = p(e). 
b p(ab)+ p(be). 
c p(ab /c /d)+ p(b /c /de). 
d 1 − (1 − p(ab))(1 − p(be)). 
e 1 − (1 − p(ab /c /d))(1 − p(b /c /de)). 
f p(ab) + p(/abe) by ab+ be = ab+ /(ab)be = ab+ (/a + a /b)be = ab+ /abe. 
g p(ab /c /d) + p(/ab /c /de ) by Eq. (4). 
h
((f) − (g))/(g) ∗ 100 %.  
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during the solving of a fault tree was impossible before the development 
of the BDD truncation algorithm [15]. 

1.6. Objectives and structure of the paper 

The complemented logic gate of /G2 can be solved using the Boolean 
complement of ZBDD in Eq. (6), and two ZBDDs for G1 and / G2 can be 
combined to generate the exact solutions of G1/G2. However, it is not 
practically used since the simultaneous encoding of x and / x in ZBDD is 
very complex and drastically increases the computational burden 
depending on the number of complemented events. Thus, a noncoherent 
fault tree is solved using the ZBDD algorithm with DTA instead of the 
exact calculation of G1/G2. Owing to the use of DTA, the seismic CDF is 
drastically overestimated since the seismic PSA model has many nonrare 
events as explained in Section 1.4. 

/ < x, L,R>ZBDD =< x, /L/R, < /x, /R, 0 > >ZBDD
/(xL + R) = /(xL)/R = (/x + x/L)/R = /x/R + x/L/R (6) 

Although the ZBDD algorithm is a successful replacement of tradi-
tional Boolean algebra, generating the accurate solution of G1/ G2 is a 
practically impossible task. This was a motivation for developing the 
zero-suppressed ternary decision diagram (ZTDD) algorithm [20]. The 
ZTDD algorithm was developed by the author of this paper, and it was 
very briefly introduced in Ref. 20. 

This study introduces the ZTDD algorithm and its features that were 
developed for efficiently solving noncoherent fault trees in PSA. By using 
the ZTDD algorithm, (1) the approximate solution is calculated by DTA 
or (2) the accurate solution can be calculated without DTA. 

The remainder of this paper is structured as follows. The ZTDD 
structure, formula of the ZTDD algorithm, deletion of the nonminimal 
solutions in ZTDD, DTA with the ZTDD algorithm, and probability 
calculation of ZTDD are explained in Section 2. The strength of the ZTDD 
Algorithm is summarized in Section 3. Furthermore, the results of ap-
plications to a sample and PSA fault trees that demonstrate the efficiency 
of the ZTDD algorithm are summarized in Sections 4 and 5. Finally, 
conclusions are provided in Section 6. 

2. ZTDD structure and algorithm 

In this section, the ZTDD algorithm is introduced. The ZTDD algo-
rithm has two major strengths: (1) It can calculate a solution of G1/ G2 
without DTA (see Sections 2.2 and 2.3). (2) It can calculate approximate 
solutions of G1/G2 with DTA (see Sections 2.2 and 2.5). 

2.1. ZTDD structure 

ZTDD is newly defined for encoding the factorized MCSs or PIs that 
have complemented basic events. ZTDD has a Boolean structure that 
comprises recursively connected if-then-else connectives (ITEs) that 
have three terms of L, R, and N as given by Eq. (7). ZTDD encodes the 
Boolean equation xL + /xR + N into three Boolean equations as xL, / xR, 
and N, where L, R, and N are child ZTDDs. The ZTDD can be interpreted 
as a factorized form of MCSs or PIs. 

xL+ /xR + N =< x, L,R,N > (7) 

The ZTDD in Eq. (7) can be encoded into BDD through Eq. (8) or 
converted into two connected ZBDDs through Eq. (9). Clearly, the ZTDD 
in Eq. (7) is much more intuitive and simpler than the BDD and ZBDD in 
Eqs. (8) and (9). 

xL+ /xR + N = xL + /xR + (x+ / x)N = < x, L + N,R + N>BDD (8)  

xL+ /xR + N =< x, L, < /x,R,N > >ZBDD (9)  

2.2. ZTDD algorithm 

To solve a fault tree in a bottom-up way, two ZTDDs need to be 
combined in a logical manner. In this study, a set of ZTDD formulae are 
developed for combining two ZTDDs as given by Eq. (10). If x and y are 
two variables with a given variable ordering x < y, x is located at a higher 
position in ZTDD than y. Thereafter, the ZTDD combining operation with 
G(x) =< x, L1,R1,N1 > and H(y) =< y, L2,R2,N2 > is recursively per-
formed from top to bottom ITEs following Eq. (10). Thus, a coherent or 
noncoherent fault tree can be solved in a bottom-up way using Eq. (10). 

G(x)⋅H(x) =< x, (L1L2 + L1N2 + N1L2), (R1R2 + R1N2 + N1R2),N1N2 >

G(x) + H(x) =< x, (L1 + L2), (R1 + R2), (N1 + N2) >

G(x)⋅H(y) =< x, L1H,R1H,N1H >

G(x) + H(y) =< x, L1,R1, (N1 + H) >

(10)  

2.3. ZTDD for Boolean complement 

Eq. (11) displays the Boolean complement of ZTDD. Here, the 
Boolean complements /(xL) = /x + x/L and /(/xR) = x + /x/R are 
applied instead of /(xL) = /x + /L and /(/xR) = x + /R to maintain 
disjoint solutions as much as possible. To calculate the accurate solu-
tions of G1/G2, the ZTDD of G2 is complemented into /G2 by Eq. (11) and 
the two ZTDDs of G1 and /G2 are combined using Eq. (10). 

/ < x, L,R,N >=< x, /L/N, /R/N, 0 >

/(xL + /xR + N) = (/x + x/L)(x + /x/R)/N = x/L/N + /x/R/N (11)  

2.4. ZTDD minimization 

When a fault tree is solved in a bottom-up way using Eq. (10), non-
minimal solutions (subsets) are introduced in ZTDD, and they need to be 
deleted. These nonminimal solutions exist in the L and R of < α, L,R,N >

since ZTDD is αL+ /αR+ N. The subsets in L and R are deleted if their 
minimal solutions (supersets) exist in N, through the Subsume(L,N) and 
Subsume(R,N) operations in Eq. (12). 

Subsume(G,H)=G\H=

⎧
⎪⎪⎨

⎪⎪⎩

G\N2 ,x>y

<x,L1\H,R1\H,N1\H> ,x<y

<x,L1\(L2 orN2),R1\(R2 orN2),N1\N2 > ,x=y

G(x)=<x,L1,R1,N1 >=xL1+/xR1+N1

H(y)=<y,L2,R2,N2 >=yL2+/yR2+N2

(12) 

The term L1\(L2 orN2) denotes that each solution in L1 is tested and 

Table 3 
Comparison of BDD, TDD, and ZBDD algorithms.  

Algorithm Encoding Solutions 

ZBDDa < x,L,R>ZBDD = xL+ R Factorized MCSs 
BDDb < x,L,R>BDD = xL+ /xR Disjoint solutions 
TDDc < x,L,R,LR>TDD = xL+ /xR+ LR Variation of BDD  

a For mainly solving coherent fault trees. 
b For mainly solving noncoherent fault trees. 
c < x,L,R,LR>TDD = xL+ /xR+ LR = x(L + LR)+ /x(R + LR) = xL+ /xR = < x,L,R>BDD.  
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deleted if L2 or N2 has a superset. 

2.5. ZTDD for DTA 

To calculate the approximate solutions of G1/G2, DTA is employed. It 
is accomplished through the subsuming operation given by Eq. (13). 

G1 /G2 ≈Delterm(G1,G2)= Subsume(G1,G2) (13)  

2.6. ZTDD probability calculation 

First, the sum of PI probabilities is calculated by recursively calcu-
lating the probability given by Eq. (14) from the bottom to top of the 
ZTDD. 

p(f )= px × p(L)+ (1 − px)× p(R) + p(N) (14) 

Second, the MCUB probability of PIs can be optionally calculated by 
navigating all minimal solutions in the ZTDD. Third, the exact proba-
bility can be calculated from BDD by converting the ZTDD into BDD if 
necessary (see Eq. (8)). 

3. Strength of the ZTDD algorithm 

Both ZTDD and ZBDD algorithms can generate MCSs from coherent 
and noncoherent fault trees. However, the ZBDD algorithm aims to solve 
coherent fault trees. When a ZBDD algorithm solves a noncoherent fault 
tree, complemented basic events should be converted into temporary 
basic events such as /x = xnot as listed in Table 4. Owing to this con-
version, the Boolean equations x/x = 0 and x + /x = 1 cannot be 
applied during MCS generation of logic gates in a bottom-up way, and 
they are applied at the final stage after generating MCSs of a top event. 
For this reason, MCS generation becomes very explosive when a fault 
tree has many complemented events and logic gates. This is a serious 
limitation of a ZBDD algorithm. 

As listed in Table 5, the Boolean equations of x/x, x+ / x, and / (xy) 
can be directly solved with the ZTDD algorithm without the substitution 
of /x = xnot and /y = ynot. This is a great strength of the ZTDD algorithm 
over the ZBDD algorithm when a fault tree has many complemented 
events and logic gates. 

4. ZTDD application to sample fault tree 

4.1. ZTDD algorithm without DTA 

The fault tree in Eq. (1) is solved in a bottom-up way with the ZTDD 
algorithm in Eq. (10) and Boolean complement in Eq. (11). The resultant 
ZTDDs for G1, G2, and /G2 are depicted in Figs. 1–3. By combining the 
two ZTDDs of G1 and /G2, the ZTDD for G1/G2 is calculated as shown in 

Fig. 4. 
The ZTDD shown in Fig. 4 can be converted into the BDD shown in 

Fig. 5. This BDD is identical to the SDPs in Eq. (4). In other words, the 

Table 4 
Examples of ZBDD Boolean operations.  

Boolean equations ZBDD Boolean operations (see Appendix A) 

x/ x < x,1,0 > < xnot ,1,0 >= < x,< xnot ,1,0 >,0 >a 

x+ / x < x,1,0 > + < xnot ,1,0 >= < x,1,< xnot ,1,0≫a 

/ (xy) Impossible encoding  

a x/x = 0 and x + /x = 1 cannot be applied during MCS generation.  

Table 5 
Examples of ZTDD Boolean operations.  

Boolean equations ZTDD Boolean operations (see Eqs. (10) and (11)) 

x/ x < x,1,0,0 > < x,0,1,0 >= < x,0,0,0 >= 0 
x+ / x < x,1,0,0 > + < x,0,1,0 >= < x,1,1,0 >= 1 
/ (xy) / < x,< y,1,0,0 >,0,0 >= < x, / < y,1,0,0 >,1,0 >

= < x,< y,0,1,0 >,1,0 >= /x+ x/y  

Fig. 1. ZTDD for G1 

G1 = < a, < b,1, 0,0 >, 0, < b, < c, 1,0, < e,1, 0,0≫, 0, 0≫ 
Identical to G1 = ab + bc + be in Eq. (3). 

Fig. 2. ZTDD for G2 

G2 = < b, < c,1, 0, < d,1, 0,0≫, 0, 0 >

Identical to G2 = bc + bd in Eq. (3). 
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BDD that is converted from the ZTDD is identical to the BDD that is 
directly calculated from G1/G2. 

4.2. ZTDD algorithm with DTA 

The ZTDD that is generated from G1/G2 by the ZTDD algorithm with 
DTA in Eqs. (10) and (13) is depicted in Fig. 6. It can be confirmed that 
the ZTDD in Fig. 6 is identical to the Boolean equation in Eq. (2). 

Fig. 3. ZTDD for /G2 

/G2 = < b, < c,0, < d,0, 1,0 >, 0 >, 1, 0 >

Identical to /G2 = /b + /c/d in Eq. (3). 

Fig. 4. ZTDD without DTA for G1/G2 

Identical to G1/G2 = ab/c/d + b/c/de in Eq. (3). 

Fig. 5. BDD for G1/G2 

Identical to G1/G2 = ab/c/d + /ab/c/de in Eq. (4). 

Fig. 6. ZTDD with DTA for Delterm(G1,G2)

Identical to Delterm(G1,G2) = ab + be in Eq. (2). 
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5. ZTDD application to PSA fault trees 

The ZTDD algorithm in Section 2 was implemented in a new tool 
named ZEBRA (ZTDD Equation Based Risk Analyzer), and its perfor-
mance was compared with that of the fault tree solver FTREX (Fault Tree 
Reliability Evaluation eXpert), which employs the ZBDD algorithm [3, 
4]. With the large fault trees in Table 6, calculations were performed 
using FTREX and ZEBRA with DTA by employing the calculation options 
in Table 7. The calculation results presented in Tables 8–11 reveal that 
ZEBRA outperforms FTREX in solving large fault trees. 

6. Conclusions 

In this paper, a novel algorithm, the ZTDD algorithm, and its features 
are introduced. The algorithm was developed to avert the CDF over-
estimation caused by DTA. Further, the solving of noncoherent fault 
trees with the ZTDD algorithm is elucidated. The use of the ZTDD al-
gorithm for the PSA of nuclear power plants is strongly recommended. 
The results of this study can be summarized as follows.  

(1) The ZTDD algorithm can calculate a solution of G1/G2 without 
DTA (Sections 2.2 and 2.3). If this ZTDD is converted into BDD, it 
is identical to the BDD that is directly calculated from G1/G2. 
Thus, the extreme overestimation of p(G1 /G2) can be avoided 
using the proposed ZTDD algorithm.  

(2) The ZTDD algorithm can calculate the approximate solution of 
G1/G2 with DTA (Sections 2.2 and 2.5). This ZTDD is identical to 
the ZBDD that is directly calculated from G1/G2 with DTA. In 
order to calculate the solution of a noncoherent fault tree using 
the ZBDD algorithm, /x needs to be replaced with a temporary 
basic event. Hence, the size of ZBDD exponentially increases 
when many completed basic events are present (Section 5).  

(3) The ZTDD algorithm can solve a noncoherent fault tree 
comprising many complemented basic events with or without 
DTA, which is advantageous. Furthermore, the ZTDDs of logic 
gates maintain a minimal size when a fault tree is solved in a 
bottom-up way since a ZTDD simultaneously encodes three 
Boolean logics that have x, /x, and nothing. 
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Table 6 
PSA fault trees.  

Fault trees Gates Events /Gatesa /Eventsb Initiators 

Loss of offsite power 
multi-unit PSA 

138,381 24,843 316 9 95 

Seismic multi-unit PSA 67,131 19,096 195 0 13 
Low power and 

shutdown PSA 
50,220 11,801 4,475 2 45 

Internal PSA 8,175 3,982 172 13 17  

a Complemented gates. 
b Complemented events. 

Table 7 
Calculation options.  

Calculations Parallel 
computing 

Local 
DTAa 

Local mutually exclusive event 
deletionb 

C1    
C2  O O 
C3 O   
C4 O O O  

a Although the DTA is always performed one time with the MCSs of a top event 
by G1/G2 ≅ Delterm(G1, G2), it can be applied at any child logic gate by G1/

G2 ≅ Delterm(G1,G2)/G2. 
b The complemented gate /G2 of G1/G2 for mutually exclusive event deletion 

can be additionally connected to the child gates of G1 before solving a fault tree.  

Table 8 
Calculation of loss of offsite power multi-unit PSA (seconds).  

Truncation limit 1.00E-11 1.00E-12 1.00E-13 
MCSs 154,937 674,332 2,734,715 
FTREX 2.0 C1 28 224 1,972 

C2 34 145 2,250 
ZEBRA 1.0 C1 14 45 199 

C2 12 29 88  

Table 9 
Calculation of seismic multi-unit PSA (seconds).  

Truncation limit 1.00E-11 1.00E-12 1.00E-13 
MCSs 18,173 85,133 410,261 
FTREX 2.0 C1 9 45 303 

C2 5 20 107 
ZEBRA 1.0 C1 5 18 112 

C2 4 6 15  

Table 10 
Calculation of low power and shutdown PSA (seconds).  

Truncation limit 1.00E-09 1.00E-10 1.00E-11 
MCSs 3,100 25,174 170,963 
FTREX 2.0 C1 16 49 630 

C2 15 43 341 
ZEBRA 1.0 C1 36 150 581 

C2 24 74 218 
C3 18 84 357 
C4 9 28 86  

Table 11 
Calculation of internal PSA (seconds).  

Truncation limit 1.00E-15 1.00E-16 1.00E-17 
MCSs 1,359,385 4,494,871 14,139,375 
FTREX 2.0 C1 23 55 127 

C2 33 76 180 
ZEBRA 1.0 C1 34 71 173 

C2 22 65 157 
C3 20 46 114 
C4 18 43 105  
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Appendix A. ZBDD algorithm 

The Boolean combination of G(x) =< x, L1,R1 > and H(y) =< y, L2,R2 > is formulated as Eq. (A.1) [3,4]. Here, x < y, g = G(x) and h = H(y). That 
is, the variable x is located at a higher position in ZBDD than variable y. 

G(x)⋅H(x) =< x, (L1L2 + L1R2 + R1L2),R1R2 >

G(x) + H(x) =< x, (L1 + L2), (R1 + R2) >

G(x)⋅H(y) =< x, L1h,R1h >

G(x) + H(y) =< x, L1, (R1 + h) >

(A.1) 

When ab + abc is located in a ZBDD, abc is a subset of ab. Specifically, ab and abc are minimal and nonminimal solutions, respectively. Therefore, 
abc should be deleted (subsumed). When a fault tree is solved in a bottom-up way with Eq. (A.1), nonminimal solutions in the ZBDD of each logic gate 
should be deleted. 

When a ZBDD has < α,G(x),H(y) >, the nonminimal solutions exist in G(x) since it is αG(x)+ H(y). The subsuming operation is derived as Eq. (A.2). 

Subsume(G,H) = G\H =

⎧
⎪⎪⎨

⎪⎪⎩

G\R2 , x > y

< x, L1\H,R1\H > , x < y

< x, L1\(L2 or R2),R1\R2 > , x = y

G(x) =< x, L1,R1 >= xL1 + R1

H(y) =< y, L2,R2 >= yL2 + R2

(A.2)  

where the term L1\(L2 or R2) in the last case indicates that each solution in L1 is tested and deleted if L2 or R2 has its minimal solution. 
If a fault tree has a logical combination of G1/G2, it is approximated by DTA. Nonminimal solutions in G1 are deleted if minimal solutions are in G2. 

Then, the remaining solutions of G1 become the final solutions. 

G1 /G2 ≈ Subsume(G1,G2) (A.3)  
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