DOI QR코드

DOI QR Code

Numerical study on the gaseous radioactive pollutant dispersion in urban area from the upstream wind: Impact of the urban morphology

  • Shuai Wang (China Ship Development and Design Center) ;
  • Xiaolei Zheng (International Academy of Neutron Science) ;
  • Jin Wang (International Academy of Neutron Science) ;
  • Jianzhi Yang (Department of Built Environment, Hefei University of Technology)
  • Received : 2022.10.21
  • Accepted : 2024.01.09
  • Published : 2024.06.25

Abstract

The radioactive pollutant could migrate to the downstream urban area under the action of atmospheric dispersion due to the turbulent mixing under actual pollution accidents. A scenario in which radioactive contaminants from the upstream (for example, a nearshore nuclear power plant accident) migrates to the downstream urban blocks have been considered in this study. Numerical simulations using computational fluid dynamics (CFD) are then conducted to investigate the effects of the urban morphology (building packing density and layout) on the atmospheric dispersion of radioactive pollutants in this scenario. The building packing density and structure can significantly affect urban areas' mean flow pattern and the turbulent kinetic energy (TKE). The flow pattern and the TKE distribution influence the radioactive pollution dispersion. It is found that the radioactive pollution at the urban canyons is significantly affected by the vertical transport at the canyon. A comparison of the distributions of radioactive and traditional non-radioactive pollutants is also provided.

Keywords

Acknowledgement

We thank other FDS Team members, and authors and contributors of references cited. This work is supported by the National Natural Science Foundation of China (72001201).

References

  1. V. Fuka, Z.T. Xie, I.P. Castro, P. Hayden, M. Carpentieri, A.G. Robins, Scalar fluxes near a tall building in an aligned array of rectangular buildings, Boundary-Layer Meteorol. 167 (2018) 53-76. https://doi.org/10.1007/s10546-017-0308-4
  2. J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949. https://doi.org/10.1016/j.atmosenv.2006.09.018
  3. J. Baker, H.L. Walker, X. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892. https://doi.org/10.1016/j.atmosenv.2004.08.051
  4. B. Sanchez, J.L. Santiago, A. Martilli, M. Palacios, F. Kirchner, CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms, Atmos. Chem. Phys. 16 (2016) 12143-12157. https://doi.org/10.5194/acp-16-12143-2016
  5. D.J. Gallacher, A.G. Robins, A. Burt, S. Chadwick, P. Hayden, M. Williams, Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches, J. Radiol. Prot. 36 (2016) 746-784. https://doi.org/10.1088/0952-4746/36/4/746
  6. T. Christoudias, Y. Proestos, J. Lelieveld, Atmospheric dispersion of radioactivity from nuclear power plant accidents: global assessment and case study for the Eastern Mediterranean and Middle East, Energies 7 (2014) 8338-8354. https://doi.org/10.3390/en7128338
  7. A. Basit, F. Espinosa, R. Avila, S. Raza, N. Irfan, Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system, J. Radiol. Prot. 28 (2008) 539-561. https://doi.org/10.1088/0952-4746/28/4/007
  8. Z.-R. Huang, Y.-J. Zhang, Y.-B. Wen, Y.-F. Tang, C.-W. Liu, F.-Y. Zhao, Synoptic wind driven ventilation and far field radionuclides dispersion across urban block regions: effects of street aspect ratios and building array skylines, Sustain. Cities Soc. 78 (2022) 103606.
  9. Leelossy A, I. Lagzi, A. Kovacs, R. Meszaros, A review of numerical models to predict the atmospheric dispersion of radionuclides, J. Environ. Radioact. 182 (2018) 20-33. https://doi.org/10.1016/j.jenvrad.2017.11.009
  10. Leelossy A, F. Molnar, F. Izsak, Havasi A, I. Lagzi, R. Meszaros, Dispersion modeling of air pollutants in the atmosphere: a review, Cent. Eur. J. Geosci. 6 (2014) 257-278.
  11. J. Hang, Y. Li, M. Sandberg, R. Buccolieri, S. Di Sabatino, The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas, Build. Environ. 56 (2012) 346-360. https://doi.org/10.1016/j.buildenv.2012.03.023
  12. M. Llaguno-Munitxa, E. Bou-Zeid, M. Hultmark, The influence of building geometry on street canyon air flow: validation of large eddy simulations against wind tunnel experiments, J. Wind Eng. Ind. Aerod. 165 (2017) 115-130. https://doi.org/10.1016/j.jweia.2017.03.007
  13. X. Cai, Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar, Atmos. Environ. 51 (2012) 268-277. https://doi.org/10.1016/j.atmosenv.2012.01.010
  14. M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations, J. Wind Eng. Ind. Aerod. 99 (2011) 330-339. https://doi.org/10.1016/j.jweia.2011.01.003
  15. A. Dobre, S.J. Arnold, R.J. Smalley, J.W.D. Boddy, J.F. Barlow, A.S. Tomlin, et al., Flow field measurements in the proximity of an urban intersection in London, UK, Atmos. Environ. 39 (2005) 4647-4657. https://doi.org/10.1016/j.atmosenv.2005.04.015
  16. J. Hang, Z. Luo, X. Wang, L. He, B. Wang, W. Zhu, The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons, Environ. Pollut. 220 (2017) 72-86. https://doi.org/10.1016/j.envpol.2016.09.024
  17. L. He, J. Hang, X. Wang, B. Lin, X. Li, G. Lan, Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings, Sci. Total Environ. 584-585 (2017) 189-206. https://doi.org/10.1016/j.scitotenv.2017.01.138
  18. M.N. Akhter, M.E. Ali, M.M. Rahman, M.N. Hossain, M.M. Molla, Simulation of air pollution dispersion in Dhaka city street canyon, AIP Adv. 11 (2021) 065022.
  19. L. Ricciardi, T. Gelain, S. Soares, Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts, Nucl. Eng. Des. 292 (2015) 248-260. https://doi.org/10.1016/j.nucengdes.2015.06.014
  20. L.L. Tao, L.W. Chen, P.C. Long, C.H. Chen, J. Wang, Integrated risk assessment method for spent fuel road transportation accident under complex environment, Nucl. Eng. Technol. 53 (2021) 393-398. https://doi.org/10.1016/j.net.2020.09.030
  21. E.C. d'Oro, A. Malizia, Emergency management in the event of radiological dispersion in an urban environment, Sensors 23 (2023) 2029.
  22. R. Jia, J.Z. Yang, X.W. Zhu, F.S. Xu, L.P. Wang, A study on the gaseous radionuclide dispersion in the highway across urban blocks: effects of the urban morphology, roadside vegetation and leakage location, Sustain. Cities Soc. 95 (2023) 104617.
  23. B. Blocken, Computational Fluid Dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations, Build. Environ. 91 (2015) 219-245. https://doi.org/10.1016/j.buildenv.2015.02.015
  24. Z. Gao, R. Bresson, Y. Qu, M. Milliez, C. de Munck, B. Carissimo, High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse, Urban Clim. 23 (2018) 114-130. https://doi.org/10.1016/j.uclim.2016.11.002
  25. X.-X. Li, R.E. Britter, L.K. Norford, Transport processes in and above two-dimensional urban street canyons under different stratification conditions: results from numerical simulation, Environ. Fluid Mech. 15 (2015) 399-417. https://doi.org/10.1007/s10652-014-9347-2
  26. W. Wang, E. Ng, Air ventilation assessment under unstable atmospheric stratification - a comparative study for Hong Kong, Build. Environ. 130 (2018) 1-13. https://doi.org/10.1016/j.buildenv.2017.12.018
  27. Y. Zhang, Z. Gu, C.W. Yu, Review on numerical simulation of airflow and pollutant dispersion in urban street canyons under natural background wind condition, Aerosol Air Qual. Res. 18 (2018) 780-789. https://doi.org/10.4209/aaqr.2017.09.0303
  28. B.E. Launder, B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Tran. 1 (1974) 131-137. https://doi.org/10.1016/0094-4548(74)90150-7
  29. M.K. Pham, P.P. Povinec, H. Nies, M. Betti, Dry and wet deposition of 7Be, 210Pb and 137Cs in Monaco air during 1998-2010: seasonal variations of deposition fluxes, J. Environ. Radioact. 120 (2013) 45-57. https://doi.org/10.1016/j.jenvrad.2012.12.007
  30. H. Terada, G. Katata, M. Chino, H. Nagai, Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioact. 112 (2012) 141-154. https://doi.org/10.1016/j.jenvrad.2012.05.023
  31. T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113. https://doi.org/10.1016/0378-7788(88)90026-6
  32. J. Franke, A. Hellsten, K.H. Schlunzen, B. Carissimo, The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary, Int. J. Environ. Pollut. 44 (2011) 419-427. https://doi.org/10.1504/IJEP.2011.038443
  33. Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, et al., AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerod. 96 (2008) 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
  34. F. Xue, X. Li, The impact of roadside trees on traffic released PM10 in urban street canyon: aerodynamic and deposition effects, Sustain. Cities Soc. 30 (2017) 195-204. https://doi.org/10.1016/j.scs.2017.02.001
  35. H.-Y. Zhong, D.-D. Zhang, Y. Liu, D. Liu, F.-Y. Zhao, Y. Li, et al., Wind driven "pumping" fluid flow and turbulent mean oscillation across high-rise building enclosures with multiple naturally ventilated apertures, Sustain. Cities Soc. 50 (2019) 101619.
  36. M.J. Brown, R.E. Lawson, D.S. DeCroix, R.L. Lee, Comparison of Centerline Velocity Measurements Obtained Around 2D and 3D Building Arrays in a Wind Tunnel. Tech Rep, vol. 7, Los Alamos National Laboratory, NM, 2001.