Acknowledgement
The authors are thankful for the support of the Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China.
References
- A. Faghri, Review and advances in heat pipe science and technology, J. Heat Tran. 134 (2012).
- A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes 5 (2014) 1-48. https://doi.org/10.5098/fhp.5.1
- D. Jafari, W.W. Wits, B.J. Geurts, Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications, Appl. Therm. Eng. 168 (2020).
- C. Liu, R. Xie, N. Li, D. Lu, et al., Experimental study of loop heat pipes with different working fluids in 190-260 K, Appl. Therm. Eng. 178 (2020).
- Y. Tang, H. Tang, J. Li, S. Zhang, et al., Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes, Appl. Therm. Eng. 115 (2017) 1020-1030. https://doi.org/10.1016/j.applthermaleng.2016.12.056
- M. El-Genk, J.M. Tournier, Uses of liquid-metal and water heat pipes in space reactor power systems, Front. Heat Pipes 2 (2011).
- H.N. Chaudhry, B.R. Hughes, S.A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev. 16 (2012) 2249-2259. https://doi.org/10.1016/j.rser.2012.01.038
- S. Tang, C. Wang, X. Liu, G. Su, et al., Experimental investigation of a novel heat pipe thermoelectric generator for waste heat recovery and electricity generation, Int. J. Energy Res. 44 (2020) 7450-7463. https://doi.org/10.1002/er.5465
- C. Wang, S. Tang, X. Liu, G.H. Su, et al., Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery, Appl. Therm. Eng. 175 (2020).
- Y. Ma, M. Liu, B. Xie, W. Han, et al., Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods, Ann. Nucl. Energy 151 (2021).
- Y. Ma, E. Chen, H. Yu, R. Zhong, et al., Heat pipe failure accident analysis in megawatt heat pipe cooled reactor, Ann. Nucl. Energy 149 (2020).
- R. Hernandez, M. Todosow, N.R. Brown, Micro heat pipe nuclear reactor concepts: analysis of fuel cycle performance and environmental impacts, Ann. Nucl. Energy 126 (2019) 419-426. https://doi.org/10.1016/j.anucene.2018.11.050
- D.I. Poston, M.A. Gibson, T. Godfroy, P.R. McClure, KRUSTY Reactor Design, Nucl. Technol. 206 (2020) 13-30.
- Y. Ma, C. Tian, H. Yu, R. Zhong, et al., Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor, Prog. Nucl. Energy 140 (2021).
- Z. Zibandeh Nezam, B. Zohuri, Heat pipe as a passive cooling system driving new generation of nuclear power plants, Edelweiss Chem. Sci. J. 3 (2021) 9.
- Q. Guo, H. Guo, X.K. Yan, F. Ye, et al., Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe, Heat Tran. Eng. 39 (2018) 1631-1640. https://doi.org/10.1080/01457632.2017.1370325
- A. Alizadehdakhel, M. Rahimi, A.A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, Int. Commun. Heat Mass Tran. 37 (2010) 312-318. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.002
- L. Asmaie, M. Haghshenasfard, A. Mehrabani-Zeinabad, M. Nasr Esfahany, Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling, Heat and Mass Transfer/Waerme- und Stoffuebertragung 49 (2013) 667-678. https://doi.org/10.1007/s00231-013-1110-6
- A.B. Solomon, K. Ramachandran, L.G. Asirvatham, B.C. Pillai, Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid, Int. J. Heat Mass Tran. 75 (2014) 523-533. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.007
- B. Fadhl, L.C. Wrobel, H. Jouhara, CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a, Appl. Therm. Eng. 78 (2015) 482-490. https://doi.org/10.1016/j.applthermaleng.2014.12.062
- H. Sun, S. Tang, C. Wang, J. Zhang, et al., Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology, Nucl. Eng. Des. 370 (2020) 110907.
- B.V. Derjaguin, N.V. Churaev, On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films, J. Colloid Interface Sci. 66 (1978) 389-398. https://doi.org/10.1016/0021-9797(78)90056-5
- M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, Int. J. Heat Mass Tran. 15 (1972) 1851-1863. https://doi.org/10.1016/0017-9310(72)90058-0
- P.C. Wayner, Adsorption and capillary condensation at the contact line in change of phase heat transfer, Int. J. Heat Mass Tran. 25 (1982) 707-713. https://doi.org/10.1016/0017-9310(82)90176-4
- R. Ranjan, J.Y. Murthy, S.V. Garimella, Numerical study of evaporation heat transfer from the liquid-vapor interface in wick microstructures, ASME International Mechanical Engineering Congress and Exposition, Proceedings 9 (2010) 1323-1333.
- R. Ranjan, J.Y. Murthy, S.V. Garimella, U. Vadakkan, A numerical model for transport in flat heat pipes considering wick microstructure effects, Int. J. Heat Mass Tran. 54 (2011) 153-168. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.057
- Y. Ma, H. Yu, S. Huang, Y. Zhang, et al., Effect of inclination angle on the startup of a frozen sodium heat pipe, Appl. Therm. Eng. 201 (2022).
- H. Sun, M. Pellegrini, C. Wang, S. Suzuki, et al., CFD simulation based on film model of high temperature potassium heat pipe at different positions: horizontal, vertical, and 45◦ inclined, Prog. Nucl. Energy 154 (2022).
- Brackbill Ju, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
- A. Faghri, Heat pipe science and technology, Fuel Energy Abstr. 36 (1995) 285.
- C. Wang, D. Zhang, S. Qiu, W. Tian, et al., Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor, Nucl. Eng. Des. 265 (2013) 691-700. https://doi.org/10.1016/j.nucengdes.2013.09.023
- C. Wang, Z. Guo, D. Zhang, S. Qiu, et al., Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor, Prog. Nucl. Energy 68 (2013) 142-152. https://doi.org/10.1016/j.pnucene.2013.07.001