DOI QR코드

DOI QR Code

A comprehensive evaluation of Mg-Ni based alloys radiation shielding features for nuclear protection applications

  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • K.A. Mahmoud (Ural Federal University) ;
  • Faras Q. Mohammed (Department of Production Engineering and Metallurgy, University of Technology) ;
  • Kawa M. Kaky (Al-Nisour University College)
  • 투고 : 2023.11.11
  • 심사 : 2023.12.18
  • 발행 : 2024.05.25

초록

The current study aims to study the impacts of the substitution of magnesium with nickel concentrations on physical and γ-ray shielding capacity of magnesium alloys. The density of the magnesium alloys under study is varied from 3.677 g/cm3 to 5.652 g/cm3, with raising the nickel content from 26.7 wt% to 54.8 wt% and reducing the magnesium concentration from 72.6 wt% to 44.2 wt%, respectively. Additionally, the examination of the γ-ray shielding capacity using the Monte Carlo simulation code shows that the substitution of magnesium by nickel content in the magnesium alloys was associated with an enhancement in the γ-ray shielding capacity, where the linear attenuation coefficient for the studied alloys was enhanced by 53.22 %, 52.45 %, and 52.52 % at γ-ray energies of 0.662 MeV, 1.252 MeV, and 1.408 MeV, respectively, with raising the nickel concentration from 26.7 wt% to 54.8 wt%. Simultaneously, the half-value thickness for magnesium alloys was reduced from 2.47 cm to 1.62 cm (at gamma ray energy of 0.662 MeV), from 3.39 cm to 2.22 cm (at gamma ray energy of 1.252 MeV), and from 3.60 cm to 2.36 cm (at gamma ray energy of 1.408 MeV), raising the nickel concentration from 26.7 wt % to 54.8 wt%, respectively. The study shows that the substitution of magnesium for nickel greatly enhanced the radiation shielding capacity of the magnesium alloys.

키워드

참고문헌

  1. S. Housh, B. Mikucki, A. Stevenson, Selection and application of magnesium and magnesium alloys, in: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990, pp. 455-479, https://doi.org/10.31399/asm.hb.v02.a0001074.
  2. E. Aghion, B. Bronfin, F. Von Buch, S. Schumann, H. Friedrich, Newly developed magnesium alloys for powertrain applications, J. Miner. Met. Mater. Soc. 55 (2003) 30-33, https://doi.org/10.1007/s11837-003-0206-8.
  3. M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Des. Manuf. Technol. 39 (2008) 851-865, https://doi.org/10.1007/s00170-007-1279-2.
  4. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, H.C. Shih, Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions, Corrosion Sci. 47 (2005) 1001-1021, https://doi.org/10.1016/j.corsci.2004.04.009.
  5. Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. 31 (2000) 2895-2906, https://doi.org/10.1007/BF02830349.
  6. H. Wang, Z.M. Shi, K. Yang, Magnesium and magnesium alloys as degradable metallic biomaterials, Adv. Mater. Res. 32 (2008) 207-210. https://doi.org/10.4028/www.scientific.net/AMR.32.207.
  7. G. Friedlmeier, M. Arakawa, T. Hirai, E. Akiba, Preparation and structural, thermal and hydriding characteristics of melt-spun Mg-Ni alloys, J. Alloys Compd. 292 (1999) 107-117, https://doi.org/10.1016/S0925-8388(99)00285-6.
  8. M. Buyukyildiz, M. Kurudirek, M. Ekici, O. Icelli, Y. Karabul, Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources, Prog. Nucl. Energy 100 (2017) 245-254, https://doi.org/10.1016/j.pnucene.2017.06.014.
  9. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, J. Li, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corrosion Sci. 62 (2012) 42-50, https://doi.org/10.1016/j.corsci.2012.04.047.
  10. H. Benfu, H. Kinoshita, T. Shibayama, H. Takahashi, Effects of helium on radiation behavior in low activation Fe-Cr-Mn alloys, Mater. Trans. 43 (2002) 622-626, https://doi.org/10.2320/matertrans.43.622.
  11. J. Bohlen, D. Letzig, K.U. Kainer, New perspectives for wrought magnesium alloys, Mater. Sci. Forum 546-549 (2007) 1-10. https://doi.org/10.4028/www.scientific.net/MSF.546-549.1.
  12. N. Loukil, Alloying elements of magnesium alloys: a literature review, in: Magnesium Alloys Structure and Properties, IntechOpen, 2022, https://doi.org/10.5772/intechopen.96232.
  13. L. Yu, P.L. Yap, A. Santos, D. Tran, D. Losic, Lightweight bismuth titanate (Bi 4 Ti 3 O 12) nanoparticle-epoxy composite for advanced lead-free X-ray radiation shielding, ACS Appl. Nano Mater. 4 (2021) 7471-7478, https://doi.org/10.1021/acsanm.1c01475.
  14. X. Chen, J. Liu, Z. Zhang, F. Pan, Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy, Mater. Des. 42 (2012) 327-333, https://doi.org/10.1016/j.matdes.2012.05.061.
  15. H. Yaykas,li, H. Eskalen, Y. Kavun, M. Gogebakan, Microstructural, thermal, and radiation shielding properties of Al50B25Mg25 alloy prepared by mechanical alloying, J. Mater. Sci. Mater. Electron. 33 (2022) 2350-2359, https://doi.org/10.1007/s10854-021-07434-9.
  16. J.S. Alzahrani, Z.A. Alrowaili, C. Eke, Z.M.M. Mahmoud, C. Mutuwong, M.S. Al-Buriahi, Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys, Radiat. Phys. Chem. 195 (2022), 110090, https://doi.org/10.1016/j.radphyschem.2022.110090.
  17. B. Aygun, Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique, Radiat. Phys. Chem. 188 (2021), 109630, https://doi.org/10.1016/j.radphyschem.2021.109630.
  18. K. Sriwongsa, J. Sirimongkolchaikul, C. Sukrasorn, T. Bussaparoek, S. Kanunghet, T. Phansuea, P. Glumglomchit, P. Limkitjaroenporn, J. Kaewkhao, Radiation and fast neutron shielding properties of nickel-based superalloys: Inconel 600, 718 and 725 superalloys, Integrated Ferroelectrics Int. J. 224 (2022) 120-133, https://doi.org/10.1080/10584587.2022.2035602.
  19. S. Fida Hassan*, O.O. Nasirudeen, N. Al-Aqeeli, N. Saheb, F. Patel, M.M.A. Baig, Magnesium-nickel composite: preparation, microstructure and mechanical properties, J. Alloys Compd. 646 (2015) 333-338, https://doi.org/10.1016/j.jallcom.2015.06.099.
  20. S.F. Hassan, M. Gupta, Development of a novel magnesium/nickel composite with improved mechanical properties, J. Alloys Compd. 335 (2002) L10-L15, https://doi.org/10.1016/S0925-8388(01)01841-2.
  21. X.-5 M.C. Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, La-Ur-03-1987, II, 2003.
  22. N. Ekinci, F.I. El-Agawany, K.A. Mahmoud, A. Karabulut, B. Aygun, E. Yousef, Y. S. Rammah, Synthesis, physical properties, and gamma-ray shielding capacity of different Ni-based super alloys, Radiat. Phys. Chem. 186 (2021), https://doi.org/10.1016/j.radphyschem.2021.109483.
  23. Y.S. Rammah, K.A. Mahmoud, F.Q. Mohammed, M.I. Sayyed, O.L. Tashlykov, R. El-Mallawany, Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code, Nucl. Eng. Technol. 53 (2021), https://doi.org/10.1016/j.net.2021.02.021.
  24. M.I. Sayyed, Investigating the influence of Bi2O3 on the radiationshielding properties of TiO2-Bi2O3-B2O3-TeO2 glasses using the Phy-X software, Opt. Quant. Electron. 56 (2024) 171.
  25. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010.
  26. M.I. Sayyed, K.M. Kaky, E. S, akar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses, J. Non-Cryst. Solids 512 (2019) 33-40.
  27. S.A.M. Issa, M. Rashad, T.A. Hanafy, Y.B. Saddeek, Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses, J. Non-Cryst. Solids 544 (2020), 120207.
  28. M.I. Sayyed, F.Q. Mohammed, K.A. Mahmoud, E. Lacomme, K.M. Kaky, M. U. Khandaker, M.R.I. Faruque, Evaluation of radiation shielding features of co and ni-based superalloys using mcnp-5 code: potential use in nuclear safety, Appl. Sci. 10 (2020), https://doi.org/10.3390/app10217680.
  29. N. Rani, Y.K. Vermani, T. Singh, Gamma radiation shielding properties of some Bi-Sn-Zn alloys, J. Radiol. Prot. 40 (2020) 296-310, https://doi.org/10.1088/1361-6498/ab6aaf.