DOI QR코드

DOI QR Code

Energy build-up factors estimation for BaZr0.10Ti0.90O3, Ba0.90La0.10TiO3 and Ba0.90La0.10Zr0.10Ti0.90O3 ceramics in shielding applications

  • Sarabjeet Kaur (Department of Physics, Maharaja Agrasen University) ;
  • Vidushi Karol (Department of Applied Sciences, Chandigarh Group of Colleges) ;
  • Pankaj Kumar (Department of Applied Sciences, Chandigarh Group of Colleges) ;
  • Gurpreet Kaur (Department of Applied Sciences, Chandigarh Group of Colleges) ;
  • Prianka Sharma (Department of Physics, Maharaja Agrasen University) ;
  • Amandeep Saroa (Sri Guru Teg Bahadur Khalsa College) ;
  • Amrit Singh (Sri Guru Teg Bahadur Khalsa College)
  • 투고 : 2023.05.22
  • 심사 : 2023.12.17
  • 발행 : 2024.05.25

초록

The search for materials that serve as good shields for radiation has become very important in light of the increasing exposure to ionizing radiation in various vital sectors. The aim is to search for novel materials with better radiation shielding properties that are stable, nontoxic, and abundant and environment friendly. The solidstate reaction approach has been used to synthesize a few ceramics, including BaZrXTi1-XO3, Ba1-XLaXTiO3 and Ba1-XLaXZrXTi1-XO3 (with x = 0.10) i.eBaZr0.10Ti0.90O3 (BZT), Ba0.90La0.10TiO3 (BLT), and Ba0.90La0.10Zr0.10Ti0.90O3 (BLZT). The density of the prepared samples varies from 6.3471 to 11.6003 g/cm3. The X-ray diffraction technique, shows strong peaks to confirm the crystalline structure of prepared ceramic samples. Using the G-P fitting approach, the advanced radiation shielding parameters (build-up factor) have been evaluated in the photon energy region of 1.5 keV-15 MeV. It is observed from the results that exposure buildup factor (EBF) and energy absorption buildup factor (EABF) are maximum for BLZT and has the minimum value for BZT in the entire photon energy regime. The results of this work should be useful in radiation shielding applications such as in industry, medicine, and nuclear engineering.

키워드

참고문헌

  1. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solids 404 (Nov. 2014) 167-173, https://doi.org/10.1016/J.JNONCRYSOL.2014.08.003.
  2. W.C. Sung, Effect of gamma irradiation on rice and its food products, Radiat. Phys. Chem. 73 (4) (2005) 224-228, https://doi.org/10.1016/J.RADPHYSCHEM.2004.08.008.
  3. A.E. Moura, et al., Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 349 (Apr. 2015) 155-162, https://doi.org/10.1016/J.NIMB.2015.02.024.
  4. T. Von Woedtke, W.D. Julich, V. Hartmann, M. Stieber, P.U. Abel, Sterilization of enzyme glucose sensors: problems and concepts, Biosens. Bioelectron. 17 (5) (2002) 373-382, https://doi.org/10.1016/S0956-5663(01)00310-4.
  5. 'Iodine-131 for therapy of thyroid diseases. Physical and biological basis - PubMed'. https://pubmed.ncbi.nlm.nih.gov/22936505/ accessed Apr. 28, 2023.
  6. P. Kaur, P. Kaur, J.S. Alzahrani, M.S. Al-Buriahi, T. Singh, Physical, structural and radiation absorption characteristics for some Eu3+ doped heavy metal oxide phosphate glasses, Optik 264 (Aug. 2022), 169432, https://doi.org/10.1016/J.IJLEO.2022.169432.
  7. S.D. Voss, G.H. Reaman, S.C. Kaste, T.L. Slovis, 'The ALARA concept in pediatric oncology', Pediatr. Radiol. 39 (11) (2009) 1142-1146, https://doi.org/10.1007/S00247-009-1404-5.
  8. N. Rani, Y.K. Vermani, T. Singh, Gamma radiation shielding properties of some Bi-Sn-Zn alloys, J. Radiol. Prot. 40 (1) (2020) 296, https://doi.org/10.1088/1361-6498/AB6AAF.
  9. J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design, Prog. Nucl. Energy 106 (2018) 387-395, https://doi.org/10.1016/J.PNUCENE.2018.04.002.
  10. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials, Ann. Nucl. Energy 43 (May 2012) 157-166, https://doi.org/10.1016/J.ANUCENE.2012.01.004.
  11. J. Singh, V. Kumar, T. Singh, Synthesis and photon interaction characterizations of some bioactive glasses, J. Non-Cryst. Solids 548 (Nov. 2020), 120328, https://doi.org/10.1016/J.JNONCRYSOL.2020.120328.
  12. J. Singh, V. Kumar, Y.K. Vermani, M.S. Al-Buriahi, J.S. Alzahrani, T. Singh, Fabrication and characterization of barium based bioactive glasses in terms of physical, structural, mechanical and radiation shielding properties, Ceram. Int. 47 (15) (Aug. 2021) 21730-21743, https://doi.org/10.1016/J.CERAMINT.2021.04.188.
  13. A. Wagh, Y. Raviprakash, S.D. Kamath, Gamma rays interactions with Eu2O3 doped lead fluoroborate glasses, J. Alloys Compd. 695 (Feb. 2017) 2781-2798, https://doi.org/10.1016/J.JALLCOM.2016.11.299.
  14. K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul, P. Limsuwan, 'Gamma-rays shielding properties of xPbO:(100-x)B2O3 glasses system at 662 keV', Ann. Nucl. Energy 36 (9) (Sep. 2009) 1360-1365, https://doi.org/10.1016/J.ANUCENE.2009.06.019.
  15. H.O. Tekin, et al., An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses, Ceram. Int. 45 (8) (Jun. 2019) 9934-9949, https://doi.org/10.1016/J.CERAMINT.2019.02.036.
  16. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des. 307 (Oct. 2016) 364-376, https://doi.org/10.1016/J.NUCENGDES.2016.07.029.
  17. V. Karol, C. Prakash, A. Sharma, Observation of high dielectric properties of Mgsubstituted BST ceramic synthesized by conventional solid-state route, J. Mater. Sci. Mater. Electron. 32 (14) (Jul. 2021) 19478-19486, https://doi.org/10.1007/S10854-021-06465-6/METRICS.
  18. V. Karol, C. Prakash, A. Sharma, Impact of magnesium content on various properties of Ba0.95-xSr0.05MgxTiO3 ceramic system synthesized by solid state reaction route, Mater. Chem. Phys. 271 (Oct. 2021), 124905, https://doi.org/10.1016/J.MATCHEMPHYS.2021.124905.
  19. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (Aug. 2018) 367-377, https://doi.org/10.1016/J.SAA.2018.08.038.
  20. N. Singh, K.J. Singh, K. Singh, H. Singh, Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system, Radiat. Meas. 41 (1) (Jan. 2006) 84-88, https://doi.org/10.1016/J.RADMEAS.2004.09.009.
  21. S.B. Das, R.K. Singh, V. Kumar, N. Kumar, P. Singh, N. Kumar Naik, Structural, magnetic, optical and ferroelectric properties of Y3+ substituted cobalt ferrite nanomaterials prepared by a cost-effective sol-gel route, Mater. Sci. Semicond. Process. 145 (2022), 106632, https://doi.org/10.1016/J.MSSP.2022.106632.
  22. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides, Mater. Sci. Semicond. Process. 145 (2022), 106629, https://doi.org/10.1016/J.MSSP.2022.106629.
  23. J.C. Sczancoski, et al., Structure and optical properties of [Ba1-xY2x/3] (Zr0.25Ti0.75)O3 powders, Solid State Sci. 12 (7) (Jul. 2010) 1160-1167, https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2010.04.002.
  24. S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (1) (Jan. 2008) 140-146, https://doi.org/10.1016/J.NIMB.2007.10.018.
  25. S. Tuscharoen, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Structural, optical and radiation shielding properties of BaO-B2O3-rice husk ash glasses, Procedia Eng. 32 (Jan. 2012) 734-739, https://doi.org/10.1016/J.PROENG.2012.02.005.
  26. A. Saeed, Y.H. Elbashar, R.M. El shazly, Optical properties of high density barium borate glass for gamma ray shielding applications, Opt. Quant. Electron. 48 (1) (2016) 1-10, https://doi.org/10.1007/S11082-015-0274-3.
  27. J. Singh, V. Kumar, Y.K. Vermani, T. Singh, Evaluation of the physical, structural, thermal, and advanced radiation absorption characteristics of SiO2-Na2O-K2O-P2O5-CaO bioactive glasses, J. Phys. Chem. Solid. 159 (2021), https://doi.org/10.1016/J.JPCS.2021.110271.
  28. Y. Kumar, V. Karol, A. Sharma, Effect of compositional changes on dielectric and ferroelectric properties of Zr substituted barium titanate, AIP Conf. Proc. 2451 (1) (Oct. 2022), 020019, https://doi.org/10.1063/5.0095519.
  29. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1-x)O3 (0 ≤ x ≤ 0.12) ceramics, Scripta Mater. 61 (1) (2009) 68-71, https://doi.org/10.1016/J.SCRIPTAMAT.2009.03.016.
  30. R. Goel, et al., Observation of recoverable energy response in Na0.5Bi0.5TiO3-Ba0.85Sr0.15Zr0.1Ti0.9O3-Ni0.7Zn0.3Fe2O4 lead-free composites for energy storage applications, J. Mater. Sci. Mater. Electron. 34 (7) (2023), https://doi.org/10.1007/S10854-023-10112-7.
  31. E. Delgado, C. Ostos, M.L. Martinez-Sarrion, L. Mestres, P. Prieto, Characterization and electrical properties of new perovskite films of Ba(Ti,Zr)O3 type doped with lanthanum (BLZT), Physica Status Solidi (C) Current Topics in Solid State Physics 4 (11) (2007) 4099-4106, https://doi.org/10.1002/PSSC.200675939.
  32. S. Kaur, A. Singh, R. Syal, P. Sharma, Optimization of sintering temperature for dielectric studies of La doped BZT ceramics, Mater. Today: Proc. (2023), https://doi.org/10.1016/J.MATPR.2023.02.301.
  33. X. Diez-Betriu, et al., Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics, Mater. Chem. Phys. 125 (3) (Feb. 2011) 493-499, https://doi.org/10.1016/J. MATCHEMPHYS.2010.10.027.
  34. J. Ryu, et al., Ubiquitous magneto-mechano-electric generator, Energy Environ. Sci. 8 (8) (Jul. 2015) 2402-2408, https://doi.org/10.1039/C5EE00414D.
  35. B.W. Lee, E.J. Lee, Effects of complex doping on microstructural and electrical properties of PZT ceramics, J. Electroceram. 17 (4) (Jan. 2006) 597-602, https://doi.org/10.1007/s10832-006-8568-2.
  36. L. Pdungsap, N. Udomkan, S. Boonyuen, P. Winotai, Optimized conditions for fabrication of La-dopant in PZT ceramics, Sensor Actuator Phys. 122 (2) (Aug. 2005) 250-256, https://doi.org/10.1016/J.SNA.2005.06.002.
  37. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1- xO3 system, J. Am. Ceram. Soc. 91 (6) (Jun. 2008) 1769-1780, https://doi.org/10.1111/J.1551-2916.2008.02442.X.
  38. W. Cai, C. Fu, J. Gao, H. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics, J. Alloys Compd. 480 (2) (2009) 870-873, https://doi.org/10.1016/J.JALLCOM.2009.02.049.
  39. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors, J. Phys. Appl. Phys. 44 (39) (Sep. 2011), 395403, https://doi.org/10.1088/0022-3727/44/39/395403.
  40. X. Chou, J. Zhai, X. Yao, Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications, Mater. Chem. Phys. 109 (1) (May 2008) 125-130, https://doi.org/10.1016/J.MATCHEMPHYS.2007.11.005.
  41. S.K. Ghosh, M. Ganguly, S.K. Rout, T.P. Sinha, Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics, The European Physical Journal Plus 2015 130:4, 130 (4) (2015) 1-18, https://doi.org/10.1140/EPJP/I2015-15068-6.
  42. M.I. Sayyed, M.Y. AlZaatreh, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid, Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results Phys. 9 (Jun. 2018) 585-592, https://doi.org/10.1016/J.RINP.2018.01.057.
  43. V. Karol, C. Prakash, A. Sharma, Structural and dielectric study Mg doped barium strontium titanate ceramic, AIP Conf. Proc. 2265 (1) (2020), 030664, https://doi.org/10.1063/5.0017394.
  44. M.H. Lente, A.L. Zanin, I.A. Santos, D. Garcia, J.A. Eiras, Composition and Sintering Process Effects on Ferroelectric Fatigue in (1-x)Pb(Mg1/3Nb2/3)O3-X PbTiO3 Ceramics, 2012, pp. 143-150, https://doi.org/10.1002/9781118380802.CH13.
  45. A.J. Moulson, J.M. Herbert, 'Front Matter', Electroceramics, FMATTER, 2003, pp. i-xvii, https://doi.org/10.1002/0470867965.
  46. M. Lejeune, J.P. Boilot, Formation mechanism and ceramic process of the ferroelectric perovskites: Pb (Mg13Nb23)O3 and Pb (Fe12Nb12)O3, Ceram. Int. 8 (3) (1982) 99-103, https://doi.org/10.1016/0272-8842(82)90025-6.
  47. V. Karol, C. Prakash, A. Sharma, Observation of high dielectric properties of Mgsubstituted BST ceramic synthesized by conventional solid-state route, J. Mater. Sci.: Materials in Electronics 2021 32:14 32 (14) (Jun. 2021) 19478-19486, https://doi.org/10.1007/S10854-021-06465-6.
  48. R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT-xBCT dense ceramics, J. Mater. Sci. Mater. Electron. 31 (23) (2020) 21651-21660, https://doi.org/10.1007/S10854-020-04678-9.
  49. E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals, J. Alloys Compd. 752 (2018) 61-67, https://doi.org/10.1016/J.JALLCOM.2018.04.106.
  50. Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins, Ann. Nucl. Energy 63 (2014) 619-623, https://doi.org/10.1016/J.ANUCENE.2013.09.007.
  51. P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, urn:issn:0021-8898 20 (2) (1987) 79-83, https://doi.org/10.1107/S0021889887087090.
  52. P. Paufler, 'R. A. Young (Eds.), The Rietveld Method. International Union of Crystallography, Oxford University Press, 1993, p. 298, https://doi.org/10.1002/CRAT.2170300412. Price £ 45.00. ISBN 0-19-855577-6', Crystal Research and Technology, vol. 30, no. 4, pp. 494-494, Jan. 1995.