DOI QR코드

DOI QR Code

Exploring the molecular characteristics, detoxification functions, and immune responses of two glutathione S-transferases in redlip mullet (Liza haematochelia)

  • Jeongeun Kim (Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University) ;
  • Welivitiye Kankanamge Malithi Omeka (Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University) ;
  • Qiang Wan (Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University) ;
  • Jehee Lee (Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University)
  • Received : 2024.02.20
  • Accepted : 2024.04.19
  • Published : 2024.05.31

Abstract

The mechanism for the elimination of xenobiotics undergoes three different phases of reactions in organisms. Among these, glutathione S-transferases (GSTs) are classified as phase II detoxification enzymes, catalyzing the conjugation of electrophilic substrates to glutathione or reduced hydroperoxides. This study aimed to investigate the molecular characteristics, detoxification functions, and immune responses of GST omega (LhGSTO1) and kappa (LhGSTK1) in redlip mullet. The open reading frames of LhGSTO1 (720 bp) and LhGSTK1 (687 bp) encoded proteins of 239 and 228 amino acids, respectively. Sequence analysis revealed that LhGSTO1 and LhGSTK1 possessed GSH-binding sites in their N-terminal domains. Substrate-binding sites in the C-terminal domain were exclusively identified in LhGSTO1. In the tissue-specific transcription profile analysis, both LhGSTO1 and LhGSTK1 were ubiquitously expressed in all tissues of healthy mullets. Temporal expression analysis of LhGSTO1 and LhGSTK1 in the blood showed that their expression was significantly modulated by polyinosinic:polycytidylic (poly I:C), lipopolysaccharide (LPS), and Lactococcus garvieae. Different chemical and cellular assays were performed to assess the detoxification and cellular protective abilities of the two proteins. A substrate specificity test using the recombinant proteins revealed that both proteins possessed specific activity toward 1-chloro-2,4-dinitrobenzene (CDNB). In the disk diffusion assay, the smallest clearance zones were observed for LhGSTO1 and LGSTK1 against CdCl2. In the cell protection assay, both LhGSTO1 and LhGSTK1 showed significant Cd detoxification ability compared to the control. Collectively, these results demonstrate that GST omega and kappa are involved in host defense against immune stimulants and xenobiotics in redlip mullet.

Keywords

Acknowledgement

This work was supported by the 2024 education, research and student guidance grant funded by Jeju National University.

References

  1. Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7:8.
  2. Amado LL, Robaldo RB, Geracitano L, Monserrat JM, Bianchini A. Biomarkers of exposure and effect in the Brazilian flounder Paralichthys orbignyanus (Teleostei: Paralichthyidae) from the Patos Lagoon estuary (Southern Brazil). Mar Pollut Bull. 2006;52:207-13. https://doi.org/10.1016/j.marpolbul.2005.11.007
  3. Andujar-Sanchez M, Smith AW, Clemente-Jimenez JM, Rodriguez-Vico F, Las Heras-Vazquez FJ, Jara-Perez V, et al. Crystallographic and thermodynamic analysis of the binding of S-octylglutathione to the Tyr 7 to Phe mutant of glutathione S-transferase from Schistosoma japonicum. Biochemistry. 2005;44:1174-83. https://doi.org/10.1021/bi0483110
  4. Arockiaraj J, Gnanam AJ, Palanisamy R, Bhatt P, Kumaresan V, Chaurasia MK, et al. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties. Gene. 2014;546:437-42. https://doi.org/10.1016/j.gene.2014.05.063
  5. Ataya FS, Al-Jafari AA, Daoud MS, Al-Hazzani AA, Shehata AI, Saeed HM, et al. Genomics, phylogeny and in silico analysis of mitochondrial glutathione S-transferase-kappa from the camel Camelus dromedarius. Res Vet Sci. 2014;97:46-54. https://doi.org/10.1016/j.rvsc.2014.04.004
  6. Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem. 2000;275:24798-806. https://doi.org/10.1074/jbc.M001706200
  7. Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta. 2013;1830:3267-88. https://doi.org/10.1016/j.bbagen.2012.11.019
  8. Byadgi O, Chen YC, Barnes AC, Tsai MA, Wang PC, Chen SC. Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae. Fish Shellfish Immunol. 2016;58:593-603. https://doi.org/10.1016/j.fsi.2016.10.006
  9. Croom E. Metabolism of xenobiotics of human environments. In: Teplow DB, editor. Progress in molecular biology and translational science. Cambridge, MA: Elsevier; 2012. p. 31-88.
  10. Datta A, Ghosh B, Sarmah D, Chaudhary A, Borah A, Bhattacharya P. Aspects of xenobiotics and their receptors in stroke. Neuroprotection. 2022;1:23-34. https://doi.org/10.1002/nep3.9
  11. Duan Y, Liu P, Li J, Li J, Chen P. Expression profiles of selenium dependent glutathione peroxidase and glutathione S-transferase from Exopalaemon carinicauda in response to Vibrio anguillarum and WSSV challenge. Fish Shellfish Immunol. 2013;35:661-70. https://doi.org/10.1016/j.fsi.2013.05.016
  12. Espinoza HM, Shireman LM, McClain V, Atkins W, Gallagher EP. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon. Biochem Pharmacol. 2013;85:839-48. https://doi.org/10.1016/j.bcp.2012.11.018
  13. Gunderson MP, Nguyen BT, Cervantes Reyes JC, Holden LL, French JMT, Smith BD, et al. Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere. 2018;208:749-56. https://doi.org/10.1016/j.chemosphere.2018.05.183
  14. Han HJ, Lee NS, Kim MS, Jung SH. An outbreak of Lactococcus garvieae infection in cage-cultured red lip mullet Chelon haematocheilus with green liver syndrome. Fish Aquat Sci. 2015;18:333-9. https://doi.org/10.5657/FAS.2015.0333
  15. Harasgama JC, Kasthuriarachchi TDW, Sirisena DMKP, Kwon H, Lee S, Wan Q, et al. Modulation of fish immune response by interferon regulatory factor 4 in redlip mullet (Liza haematocheilus): delineation through expression profiling, antiviral assay, and macrophage polarization analysis. Dev Comp Immunol. 2022;130:104356.
  16. Harris JM, Meyer DJ, Coles B, Ketterer B. A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J. 1991;278:137-41. https://doi.org/10.1042/bj2780137
  17. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
  18. Hogstrand C, Balesaria S, Glover CN. Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comp Biochem Physiol B Biochem Mol Biol. 2002;133:523-35. https://doi.org/10.1016/S1096-4959(02)00125-2
  19. Javed M, Ahmad MI, Usmani N, Ahmad M. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci Rep. 2017;7:1675.
  20. Jayasinghe JDHE, Bathige SDNK, Nam BH, Noh JK, Lee J. Comprehensive characterization of three glutathione S-transferase family proteins from black rockfish (Sebastes schlegelii). Comp Biochem Physiol C Toxicol Pharmacol. 2016;189:31-43. https://doi.org/10.1016/j.cbpc.2016.07.003
  21. Jeng SS, Chen YH. Association of Zinc with anemia. Nutrients. 2022;14:4918.
  22. Jowsey IR, Thomson RE, Orton TC, Elcombe CR, Hayes JD. Biochemical and genetic characterization of a murine class Kappa glutathione S-transferase. Biochem J. 2003;373:559-69. https://doi.org/10.1042/bj20030415
  23. Khosravi M, Mohammadian T, Tahmasebifard M, Boroujeni MP. Correlation between C-reactive protein level, immunology, and hematology of a Oncorhynchus mykiss infected with Lactococcus garvieae. Aquac Int. 2018;26:1415-25. https://doi.org/10.1007/s10499-018-0295-6
  24. Kim J, Perera NCN, Godahewa GI, Priyathilaka TT, Lee J. Characterization of a catalase from red-lip mullet (Liza haematocheila): demonstration of antioxidative activity and mRNA upregulation in response to immunostimulants. Gene. 2019;712:143945.
  25. Kim JH, Dahms HU, Rhee JS, Lee YM, Lee J, Han KN, et al. Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comp Biochem Physiol C Toxicol Pharmacol. 2010;151:99-106. https://doi.org/10.1016/j.cbpc.2009.09.001
  26. Li C, Su X, Li Y, Li T, Sun C, Zhou T, et al. Two classes of glutathione S-transferase genes with different response profiles to bacterial challenge in Venerupis philippinarum. Fish Shellfish Immunol. 2012;32:219-22. https://doi.org/10.1016/j.fsi.2011.10.032
  27. Mani R, Meena B, Valivittan K, Suresh A. Glutathione-S-transferase and catalase activity in different tissues of marine catfish Arius arius on exposure to cadmium. Int J Pharm Pharm Sci. 2014;6:326-32.
  28. Menon D, Coll R, O'Neill LAJ, Board PG. GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway. J Cell Sci. 2015;128:1982-90. https://doi.org/10.1242/jcs.167858
  29. Oakley A. Glutathione transferases: a structural perspective. Drug Metab Rev. 2011;43:138-51. https://doi.org/10.3109/03602532.2011.558093
  30. Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. 2011;2011:457327.
  31. Saddick S, Afifi M, Abu Zinada OA. Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci. 2017;24:1672-8. https://doi.org/10.1016/j.sjbs.2015.10.021
  32. Samaraweera AV, Sandamalika WMG, Liyanage DS, Lee S, Priyathilaka TT, Lee J. Molecular characterization and functional analysis of glutathione S-transferase kappa 1 (GSTκ1) from the big belly seahorse (Hippocampus abdominalis): elucidation of its involvement in innate immune responses. Fish Shellfish Immunol. 2019;92:356-66. https://doi.org/10.1016/j.fsi.2019.06.010
  33. Shaban NZ, Salem HH, Elsadany MA, Ali BA, Hassona EM, Mogahed FAK. Distribution of glutathione S-transferase omega gene polymorphism with different stages of HBV infection including hepatocellular carcinoma in the Egyptian population. Asian Pac J Cancer Prev. 2016;17:2145-50. https://doi.org/10.7314/APJCP.2016.17.4.2145
  34. Sonawane MD, Nimse SB. C-reactive protein: a major inflammatory biomarker. Anal Methods. 2017;9:3400-13. https://doi.org/10.1039/C7AY00711F
  35. Tijani JO, Fatoba OO, Babajide OO, Petrik LF. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett. 2016;14:27-49. https://doi.org/10.1007/s10311-015-0537-z
  36. Trevisan R, Mello DF, Delapedra G, Silva DGH, Arl M, Danielli NM, et al. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: absorption, metabolism and excretion of a model electrophile. Aquat Toxicol. 2016;173:105-19. https://doi.org/10.1016/j.aquatox.2016.01.008
  37. Udayantha HMV, Liyanage DS, Nadarajapillai K, Omeka WKM, Yang H, Jeong T, et al. Molecular characterization, immune and xenobiotic responses of glutathione S-transferase omega 1 from the big-belly seahorse: novel insights into antiviral defense. Fish Shellfish Immunol. 2021;109:62-70. https://doi.org/10.1016/j.fsi.2020.12.010
  38. Wan Q, Whang I, Lee JS, Lee J. Novel omega glutathione S-transferases in disk abalone: characterization and protective roles against environmental stress. Comp Biochem Physiol C Toxicol Pharmacol. 2009;150:558-68. https://doi.org/10.1016/j.cbpc.2009.08.003
  39. Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG. Characterization of the omega class of glutathione transferases. Methods Enzymol. 2005;401:78-99. https://doi.org/10.1016/S0076-6879(05)01005-0
  40. Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, et al. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene. 2006;25:5787-800. https://doi.org/10.1038/sj.onc.1209576
  41. Yadetie F, Karlsen OA, Lanzen A, Berg K, Olsvik P, Hogstrand C, et al. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat Toxicol. 2013;126:314-25. https://doi.org/10.1016/j.aquatox.2012.09.013
  42. Zatta P, Frank A. Copper deficiency and neurological disorders in man and animals. Brain Res Rev. 2007;54:19-33. https://doi.org/10.1016/j.brainresrev.2006.10.001
  43. Zeitoun MM, Mehana EE. Impact of water pollution with heavy metals on fish health: overview and updates. Glob Vet. 2014;12:219-31.
  44. Zhu L, Dong X, Xie H, Wang J, Wang J, Su J, et al. DNA damage and effects on glutathione-S-transferase activity induced by atrazine exposure in zebrafish (Danio rerio). Environ Toxicol. 2011;26:480-8. https://doi.org/10.1002/tox.20575