DOI QR코드

DOI QR Code

In search of subcortical and cortical morphologic alterations of a normal brain through aging: an investigation by computed tomography scan

  • Mehrdad Ghorbanlou (Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences) ;
  • Fatemeh Moradi (Department of Anatomy, School of Medicine, Iran University of Medical Sciences) ;
  • Mohammad Hassan Kazemi-Galougahi (Department of Social Medicine, Faculty of Medicine, AJA University of Medical Sciences) ;
  • Maasoume Abdollahi (Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences)
  • 투고 : 2023.08.27
  • 심사 : 2023.09.27
  • 발행 : 2024.03.31

초록

Morphologic changes in the brain through aging, as a physiologic process, may involve a wide range of variables including ventricular dilation, and sulcus widening. This study reports normal ranges of these changes as standard criteria. Normal brain computed tomography scans of 400 patients (200 males, 200 females) in every decade of life (20 groups each containing 20 participants) were investigated for subcortical/cortical atrophy (bicaudate width [BCW], third ventricle width [ThVW], maximum length of lateral ventricle at cella media [MLCM], bicaudate index [BCI], third ventricle index [ThVI], and cella media index 3 [CMI3], interhemispheric sulcus width [IHSW], right hemisphere sulci diameter [RHSD], and left hemisphere sulci diameter [LHSD]), ventricular symmetry. Distribution and correlation of all the variables were demonstrated with age and a multiple linear regression model was reported for age prediction. Among the various parameters of subcortical atrophy, BCW, ThVW, MLCM, and the corresponding indices of BCI, ThVI, and CMI3 demonstrated a significant correlation with age (R2≥0.62). All the cortical atrophy parameters including IHSW, RHSD, and LHSD demonstrated a significant correlation with age (R2≥0.63). This study is a thorough investigation of variables in a normal brain which can be affected by aging disclosing normal ranges of variables including major ventricular variables, derived ventricular indices, lateral ventricles asymmetry, cortical atrophy, in every decade of life introducing BW, ThVW, MLCM, BCI, ThVI, CMI3 as most significant ventricular parameters, and IHSW, RHSD, LHSD as significant cortical parameters associated with age.

키워드

과제정보

This study was supported by AJA University of medical sciences (ethics committee code: IR.AJAUMS.REC.1402.049). Our gratitude goes to the staff of the medical imaging center of Imam Reza AJA Hospital, Tehran, Iran.

참고문헌

  1. Berrington de Gonzalez A, Pasqual E, Veiga L. Epidemiological studies of CT scans and cancer risk: the state of the science. Br J Radiol 2021;94:20210471. Erratum in: Br J Radiol 2022;95:20210471c.
  2. Ghorbanlou M, Moradi F, Mehdizadeh M. Frequency, shape, and estimated volume of intracranial physiologic calcification in different age groups investigated by brain computed tomography scan: a retrospective study. Anat Cell Biol 2022;55:63-71. https://doi.org/10.5115/acb.21.137
  3. Ugwuanyi DC, Sibeudu TF, Irole CP, Ogolodom MP, Nwagbara CT, Ibekwe AM, Mbaba AN. Evaluation of common findings in brain computerized tomography (CT) scan: a single center study. AIMS Neurosci 2020;7:311-8. https://doi.org/10.3934/Neuroscience.2020017
  4. Curra A, Pierelli F, Gasbarrone R, Mannarelli D, Nofroni I, Matone V, Marinelli L, Trompetto C, Fattapposta F, Missori P. The ventricular system enlarges abnormally in the seventies, earlier in men, and first in the frontal horn: a study based on more than 3,000 scans. Front Aging Neurosci 2019;11:294.
  5. Chrzan R, Glen A, Bryll A, Urbanik A. Computed tomography assessment of brain atrophy in centenarians. Int J Environ Res Public Health 2019;16:3659.
  6. Ghorbanlou M, Moradi F, Asgari HR. Morphometric study of sternum by computed tomography in an Iranian population: a method to discriminate between male and female. Forensic Imaging 2022;28:200501.
  7. Kolsur N, PM R, Shetty S, Kumar A. Morphometric study of ventricular indices in human brain using computed tomography scans in Indian population. Int J Anat Res 2018;6:5574-80. https://doi.org/10.16965/ijar.2018.286
  8. Sungura R, Onyambu C, Mpolya E, Sauli E, Vianney JM. The extended scope of neuroimaging and prospects in brain atrophy mitigation: a systematic review. Interdiscip Neurosurg 2021;23:100875.
  9. Xiong YY, Mok V. Age-related white matter changes. J Aging Res 2011;2011:617927.
  10. Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, Yoneyama N, Ohdake R, Imai K, Masuda M, Yokoi T, Ogura A, Wakabayashi T, Kuzuya M, Ozaki N, Hoshiyama M, Isoda H, Naganawa S, Sobue G. An unbiased data-driven agerelated structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan. Neuroimage 2018;169:134-44. https://doi.org/10.1016/j.neuroimage.2017.12.014
  11. He W, Fang X, Wang X, Gao P, Gao X, Zhou X, Mao R, Hu J, Hua Y, Xia J. A new index for assessing cerebral ventricular volume in idiopathic normal-pressure hydrocephalus: a comparison with Evans' index. Neuroradiology 2020;62:661-7. https://doi.org/10.1007/s00234-020-02361-8
  12. Yang WJ, Wasserman BA, Zheng L, Huang ZQ, Li J, Abrigo J, Wong SS, Ying MT, Chu WC, Wong LK, Leung TW, Chen XY. Understanding the clinical implications of intracranial arterial calcification using brain CT and vessel wall imaging. Front Neurol 2021;12:619233.
  13. Dzefi-Tettey K, Edzie EKM, Gorleku PN, Brakohiapa EK, Osei B, Asemah AR, Kusodzi H. Evans index among adult Ghanaians on normal head computerized tomography scan. Heliyon 2021;7:e06982.
  14. Cherbuin N, Reglade-Meslin C, Kumar R, Sachdev P, Anstey KJ. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: the path through life study. Front Psychiatry 2010;1:11.
  15. Kiroglu Y, Karabulut N, Oncel C, Yagci B, Sabir N, Ozdemir B. Cerebral lateral ventricular asymmetry on CT: how much asymmetry is representing pathology? Surg Radiol Anat 2008;30:249-55. https://doi.org/10.1007/s00276-008-0314-9
  16. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016;8:595-608. https://doi.org/10.15252/emmm.201606210
  17. Anderson VM, Fox NC, Miller DH. Magnetic resonance imaging measures of brain atrophy in multiple sclerosis. J Magn Reson Imaging 2006;23:605-18. https://doi.org/10.1002/jmri.20550
  18. Madan CR. Advances in studying brain morphology: the benefits of open-access data. Front Hum Neurosci 2017;11:405.
  19. Ritter A, Hawley N, Banks SJ, Miller JB. The association between Montreal Cognitive Assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J Alzheimers Dis 2017;58:695-9. https://doi.org/10.3233/JAD-161241
  20. Ferreira D, Hansson O, Barroso J, Molina Y, Machado A, Hernandez-Cabrera JA, Muehlboeck JS, Stomrud E, Nagga K, Lindberg O, Ames D, Kalpouzos G, Fratiglioni L, Backman L, Graff C, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Ahlstrom H, Lind L, Larsson EM, Wahlund LO, Simmons A, Westman E. The interactive effect of demographic and clinical factors on hippocampal volume: a multicohort study on 1958 cognitively normal individuals. Hippocampus 2017;27:653-67. https://doi.org/10.1002/hipo.22721
  21. Wang Y, Leiberg K, Ludwig T, Little B, Necus JH, Winston G, Vos SB, Tisi J, Duncan JS, Taylor PN, Mota B. Independent components of human brain morphology. Neuroimage 2021; 226:117546.