DOI QR코드

DOI QR Code

Analysis of the application of image quality assessment method for mobile tunnel scanning system

이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석

  • Chulhee Lee (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Dongku Kim (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Donggyou Kim (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 이철희 (한국건설기술연구원 지반연구본부) ;
  • 김동구 (한국건설기술연구원 지반연구본부) ;
  • 김동규 (한국건설기술연구원 지반연구본부)
  • Received : 2024.06.26
  • Accepted : 2024.07.12
  • Published : 2024.07.31

Abstract

The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.

인력기반의 점검보다 안전하고 효율적인 자동화 점검을 위하여 스캐닝 기술 개발이 가속화되고 있다. 컴퓨터비전 기술을 활용하여 수집된 이미지로부터 시설물 손상을 자동으로 검출하는 연구도 증가하고 있다. 이미지의 픽셀 크기, 품질 및 수량은 손상 자동 검출을 위한 딥러닝이나 이미지 처리 성능에 영향을 미칠 수 있다. 본 연구는 딥러닝기반 손상 자동 검출을 위한 이동식 터널 스캐닝 시스템의 카메라 성능과 고품질의 원시 이미지 데이터 취득을 위한 기초연구로, 이미지의 품질을 정량적으로 평가하기 위한 기법을 제안하려고 한다. 40 km/h의 이동속도 모사가 가능한 패널 장치에 테스트차트를 부착하고 국제표준 ISO 12233방법으로 실내시험을 수행하였다. 기존의 이미지 품질 평가기법들을 적용하여 실내실험에서 얻어진 이미지의 품질을 평가하였다. 카메라의 셔터스피드는 이미지에 발생하는 모션블러와 밀접한 관련이 있는 것으로 판단되었다. 이미지 품질 평가 기법 중 하나인 modulation transfer function (MTF)는 이미지 품질을 객관적으로 평가할 수 있으며, 시각적 관찰과 일치하는 것으로 판단되었다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 기반시설 첨단관리(total care) 기술개발사업(RS-2022-00142566)의 지원으로 수행되었습니다. 이에 감사드립니다.

References

  1. Abdullah-Al-Mamun, M., Tyagi, V., Zhao, H. (2021), "A new full-reference image quality metric for motion blur profile characterization", IEEE Access, Vol. 9, pp. 156361-156371. https://doi.org/10.1109/ACCESS.2021.3130177
  2. Allaix, D.L., Vliet, A.B. (2023), "Existing standardization on monitoring, safety assessment and maintenance of bridges and tunnels", ce/papers, Vol. 6, No. 5, pp. 498-504. https://doi.org/10.1002/cepa.2026
  3. Artmann, U. (2013), "Image quality evaluation using moving targets", Proc. SPIE 8667, Multimedia Content and Mobile Devices, 86671D.
  4. Bae, H., Jang, K., An, Y.K. (2021), "Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges", Structural Health Monitoring, Vol. 20, No. 4, pp. 1428-1442. https://doi.org/10.1177/1475921720917227
  5. Chan, F.H.Y., Lam, F.K., Zhu, H. (1998), "Adaptive thresholding by variational method", IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 468-473. https://doi.org/10.1109/83.661196
  6. Choi, S., Jun, H., Shin, S., Chung, W. (2021), "Evaluating accuracy of algorithms providing subsurface properties using full-reference image quality assessment", Geophysics and Geophysical Exploration, Vol. 24, No. 1, pp. 6-19. https://doi.org/10.7582/GGE.2021.24.1.006
  7. De, K., Masilamani, V. (2013), "Image sharpness measure for blurred images in frequency domain", Procedia Engineering, Vol. 64, pp. 149-158. https://doi.org/10.1016/j.proeng.2013.09.086
  8. Dinh, H., Wang, Q., Tu, F., Frymire, B., Mu, B. (2023), "Evaluation of motion blur image quality in video frame interpolation", Electronic Imaging, Vol. 35, pp. 262-1 - 262-5.
  9. Dost, S., Saud, F., Shabbir, M., Khan, M.G., Shahid, M., Lovstrom, B. (2022), "Reduced reference image and video quality assessments: review of methods", EURASIP Journal on Image and Video Processing, Vol. 2022, No. 1, pp. 1-31. https://doi.org/10.1186/s13640-021-00578-y
  10. Dugonik, B., Dugonik, A., Marovt, M., Golob, M. (2020), "Image quality assessment of digital image capturing devices for melanoma detection", Applied Sciences, Vol. 10, No. 8, 2876.
  11. Ferwerda, J.A. (2003), "Three varieties of realism in computer graphics", Proceedings of the SPIE: Human Vision and Electronic Imaging VIII, No. 5007, pp. 290-297.
  12. Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S. (2017), "Need for speed: a benchmark for higher frame rate object tracking", Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1125-1134.
  13. Huang, H.W., Li, Q.T., Zhang, D.M. (2018), "Deep learning based image recognition for crack and leakage defects of metro shield tunnel", Tunnelling and Underground Space Technology, Vol. 77, pp. 166-176. https://doi.org/10.1016/j.tust.2018.04.002
  14. Huang, Z., Zhang, C.L., Fu, H.L., Ma, S.K., Fan, X.D. (2021), "Machine inspection equipment for tunnels: a review", Journal of Highway and Transportation Research and Development, Vol. 15, No. 2, pp. 40-53.
  15. Imatest Chart, https://www.imatest.com/product/large-iso-12233-digital-still-camera-resolution-chart-ink-jet-on-paper/ (March 10, 2024).
  16. Imatest MTF, https://www.imatest.com/docs/MTF_appearance/ (March 10, 2024).
  17. Imatest, https://www.imatest.com/ (March 10, 2024).
  18. ISO 12233:2023, https://www.iso.org/obp/ui/#iso:std:iso:12233:ed-4:v1:en (March 10, 2024).
  19. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J. (2018), "Super SloMo: high quality estimation of multiple intermediate frames for video interpolation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 9000-9008.
  20. Kamble, V., Bhurchandi, K.M. (2015), "No-reference image quality assessment algorithms: a survey", Optik, Vol. 126, No. 11-12, pp. 1090-1097. https://doi.org/10.1016/j.ijleo.2015.02.093
  21. Kamdi, S., Krishna, R.K. (2012), "Image segmentation and region growing algorithm", International Journal of Computer Technology and Electronics Engineering, Vol. 2, No. 1, pp. 103-107.
  22. Kawahara, S., Doi, H., Shirato, M., Kajifusa, N., Kutsukake, T. (2014), "Investigation of the tunnel ceiling collapse in the central expressway in Japan", Proceedings of the TRB 93rd Annual Meeting, Washington, D.C., USA, TRB Paper Manuscript #14-2559.
  23. Koren, N. (2006), "The Imatest program: comparing cameras with different amounts of sharpening", Proc. SPIE 6069, Digital Photography II, Vol. 60690, pp. 195-203.
  24. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the Advances in Neural Information Processing Systems, Nevada, USA, No. 25, pp. 1097-1105.
  25. Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), "Automatic defect detection of metro tunnel surfaces using a vision-based inspection system", Advanced Engineering Informatics, Vol. 47, 101206.
  26. Liu, Y., Yeoh, J.K.W., Chua, D.K.H. (2020), "Deep learning-based enhancement of motion blurred UAV concrete crack images", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020028.
  27. Masaoka, K. (2018), "Accuracy and precision of edge-based modulation transfer function measurement for sampled imaging systems", IEEE Access, Vol. 6, pp. 41079-41086. https://doi.org/10.1109/ACCESS.2018.2856742
  28. Montero, R., Victores, J.G., Martinez, S., Jardon, A., Balaguer, C. (2015), "Past, present and future of robotic tunnel inspection", Automation in Construction, Vol. 59, pp. 99-112. https://doi.org/10.1016/j.autcon.2015.02.003
  29. Moorthy, A.K., Bovik, A.C. (2011), "Blind image quality assessment: from natural scene statistics to perceptual quality", IEEE Transactions on Image Processing, Vol. 20, No. 12, pp. 3350-3364. https://doi.org/10.1109/TIP.2011.2147325
  30. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Lee, K.M. (2019), "NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study", Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, pp. 1996-2005.
  31. Nah, S., Kim, T.H., Lee, K.M. (2017), "Deep multi-scale convolutional neural network for dynamic scene deblurring", Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 257-265.
  32. Ni, F., Zhang, J., Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Computer-Aided Civil and Infrastructure Engineering, Vol. 35, No. 7, pp. 685-700. https://doi.org/10.1111/mice.12528
  33. NTSB (2007), Ceiling collapse in the interstate 90 connector tunnel, National Transportation Safety Board, NTSB/HAR-07/02, pp. 1-13.
  34. Pambrun, J.F., Noumeir, R. (2015), "Limitations of the SSIM quality metric in the context of diagnostic imaging", Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 2960-2963.
  35. Paramanand, C., Rajagopalan, A.N. (2014), "Shape from sharp and motion-blurred image pair", International Journal of Computer Vision, Vol. 107, pp. 272-292. https://doi.org/10.1007/s11263-013-0685-1
  36. Rim, J., Lee, H., Won, J., Cho, S. (2020), "Real-world blur dataset for learning and benchmarking deblurring algorithms", Computer Vision - ECCV 2020, pp. 184-201.
  37. Salomon, D., Motta, G. (2010), Handbook of Data Compression, Springer, New York, pp. 443-730.
  38. Sankarasrinivasan, S., Balasubramanian, E., Karthik, K., Chandrasekar, U., Gupta, R. (2015), "Health monitoring of civil structures with integrated UAV and image processing system", Procedia Computer Science, No. 54, pp. 508-515.
  39. Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., Shao, L. (2019), "Human-aware motion deblurring", Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, pp. 5571-5580.
  40. Simonyan, K., Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", arXiv, Vol. 1409, 1556.
  41. Song, Q., Wu, Y., Xin, X., Yang, L., Yang, M., Chen, H., Liu, C., Hu, M., Chai, X., Li, J. (2019), "Real-time tunnel crack analysis system via deep learning", IEEE Access, Vol. 7, pp. 64186-64197. https://doi.org/10.1109/ACCESS.2019.2916330
  42. Sorel, M., Flusser, J. (2008), "Space-variant restoration of images degraded by camera motion blur", IEEE Transactions on Image Processing, Vol. 17, No. 2, pp. 105-116. https://doi.org/10.1109/TIP.2007.912928
  43. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O. (2017), "Deep video deblurring for hand-held cameras", Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 237-246.
  44. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1-9.
  45. Telleen, J., Sullivan, A., Yee, J., Wang, O., Gunawardane, P., Collins, I., Davis, J. (2007), "Synthetic shutter speed imaging", Computer Graphics Forum, Vol. 26, No. 3, pp. 591-598. https://doi.org/10.1111/j.1467-8659.2007.01082.x
  46. Ukai, M. (2007), "Advanced inspection system of tunnel wall deformation using image processing", Quarterly Report of RTRI, No. 48, No. 2, pp. 94-98. https://doi.org/10.2219/rtriqr.48.94
  47. Wang, H., Wang, Q., Zhai, J., Yuan, D., Zhang, W., Xie, X., Zhou, B., Cai, J., Lei, Y., (2022), "Design of fast acquisition system and analysis of geometric feature for highway tunnel lining cracks based on machine vision", Applied Sciences, Vol. 12, No. 5, 2516.
  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004), "Image quality assessment: from error visibility to structural similarity", IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600-612. https://doi.org/10.1109/TIP.2003.819861
  49. Xiang, C., Wang, W., Deng, L., Shi, P., Kong, X. (2022), "Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network", Automation in Construction, Vol. 140, 104346.
  50. Xue, Y., Li, Y. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 8, pp. 638-654. https://doi.org/10.1111/mice.12367
  51. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q. (2019), "Deep learning for single image super-resolution: a brief review", IEEE Transactions on Multimedia, Vol. 21, No. 12, pp. 3106-3121. https://doi.org/10.1109/TMM.2019.2919431
  52. Yasuda, T., Yamamoto, H., Shigeta, Y. (2016), "Tunnel inspection system by using high-speed mobile 3D survey vehicle: MIMM-R", Journal of Robotics Society of Japan, Vol. 34, No. 9, pp. 589-590.
  53. Ye, X.W., Jin, T., Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Structures and Systems, Vol. 24, No. 5, pp. 567-585. https://doi.org/10.12989/SSS.2019.24.5.567
  54. Yu, Y., Samali, B., Rashidi, M., Mohammadi, M., Nguyen, T.N., Zhang, G. (2022), "Vision-based concrete crack detection using a hybrid framework considering noise effect", Journal of Building Engineering, Vol. 61, 105246.