DOI QR코드

DOI QR Code

Numerical study on evaluation of grout diffusion range by the conditions of steel pipe reinforced grouting method

강관보강그라우팅 주입 조건에 따른 그라우트 확산 범위 평가에 관한 수치해석적 연구

  • 안준범 (한국과학기술원 응용과학연구소) ;
  • 조계춘 (한국과학기술원 건설및환경공학과) ;
  • 이윤아 (한국과학기술원 건설및환경공학과) ;
  • 이재원 (세종이엔티) ;
  • 민경남 (세종이엔티) ;
  • 조국제 (세종이엔티 환경사업팀)
  • Received : 2024.06.21
  • Accepted : 2024.07.18
  • Published : 2024.07.31

Abstract

Steel pipe reinforced grouting method has been widely used to strengthen the crown of tunnel face and prevent groundwater leakage during tunnel excavation. Various injection procedures without sealing have recently been suggested to enhance efficiency. There are two representative injection methods. One is simultaneous injection in segmented batches, and the other is multiple injection using the external packer. The pros and cons of each method were discussed in terms of construction duration and equipment. However, it has yet to be discussed how the injection procedure affects the grout diffusion range in the ground. This study aims to evaluate the grout diffusion range quantitatively by considering the practical grouting sequences. The grout viscosity was measured by laboratory testing. Then, the numerical modeling was structured using the commercial computational fluid dynamics software. Finally, the grout diffusion range affected by the injection procedure and ground conditions was evaluated by performing the numerical parametric study. The results showed that the injection method highly affected the grout diffusion range, especially for inhomogeneous soil. Consequently, it is anticipated that the proper method of steel pipe reinforced grouting will be suggested.

강관보강그라우팅 공법은 터널 시공 중 막장면 천단의 보강과 차수를 목적으로 시공현장에서 널리 적용되고 있다. 가장 보편적인 강관다단그라우팅 공법은 주입재의 역류를 막기 위해 강관과 보어홀 사이에 실링재를 주입하도록 규정되어 있으며 이 공정에서 긴 시간이 요구되는 실정이다. 따라서 실링 주입 공정을 제거한 강관보강그라우팅 공법이 여러 종류 제안되었으며, 대표적으로 구획을 나누어 동시에 주입하는 공법과 외부 패커를 활용해 다단으로 주입하는 공법이 있다. 시공 기간과 장비 면에서 이러한 대체 공법들의 장단점이 논의된 바 있으나 실제 지반에 각 주입 방법 별로 얼마나 주입 범위를 확보할 수 있는지에 대해서는 정량적으로 검토된 바가 없다. 따라서 본 연구에서는 실제 주입 공정에 기반하여 그라우트 주입 방법에 따른 주입 범위를 평가하고자 한다. 우선 그라우트의 점도를 실내 실험을 통해 계측하였다. 그리고 전산유체역학 상용 프로그램을 사용하여 수치해석 모델링을 구성하였다. 수치해석 모델링에 측정된 그라우트 물성과 현장에서의 주입 절차를 반영하여 매개변수 해석을 수행하였으며, 그 결과 주입 방식에 따라 주입 범위와 거동이 크게 달라지며 특히 비균질한 지반에서 더 두드러짐을 확인할 수 있었다. 본 연구에서 확인한 주입 방법과 지반 종류, 그리고 그라우트 종류에 따른 주입 범위를 기반으로 효과적인 주입공법의 선정에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Axelsson, M., Gustafson, G., Fransson, A. (2009), "Stop mechanism for cementitious grouts at different water-to-cement ratios", Tunnelling and Underground Space Technology, Vol. 24, No. 4, pp. 390-397. https://doi.org/10.1016/j.tust.2008.11.001
  2. Baek, S.H., Joo, H.W., Kwon, T.H., Han, J.T., Lee, J.H., Yoo, W.K. (2020), "Effect of permeability anisotropy on the effective radius of grout bulb in horizontal permeation grouting - Numerical study", Journal of the Korean Geotechnical Society, Vol. 36, No. 11, pp. 149-156. https://doi.org/10.7843/KGS.2020.36.11.149
  3. Bear, J. (1972), Dynamics of Fluids in Porous Media, American Elsevier Publishing Co., New York, p. 764.
  4. Benmokrane, B., Chennouf, A., Mitri, H.S. (1995), "Laboratory evaluation of cement-based grouts and grouted rock anchors", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 7, pp. 633-642. https://doi.org/10.1016/0148-9062(95)00021-8
  5. Bezuijen, A., Te Grotenhuis, R., Van Tol, A.F., Bosch, J.W., Haasnoot, J.K. (2011), "Analytical model for fracture grouting in sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 6, pp. 611-620. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000465
  6. Bouchelaghem, F. (2009), "Multi-scale modelling of the permeability evolution of fine sands during cement suspension grouting with filtration", Computers and Geotechnics, Vol. 36, No. 6, pp. 1058-1071. https://doi.org/10.1016/j.compgeo.2009.03.016
  7. Brooks, R.H., Corey, A.T. (1966), "Properties of porous media affecting fluid flow", Journal of the Irrigation and Drainage Division, Vol. 92, No. 2, pp. 61-88. https://doi.org/10.1061/JRCEA4.0000425
  8. Celik, F. (2019), "The observation of permeation grouting method as soil improvement technique with different grout flow models", Geomechanics and Engineering, Vol. 17, No. 4, pp. 367-374. https://doi.org/10.12989/GAE.2019.17.4.367
  9. Chen, Z., Huan, G., Ma, Y. (2006), Computational Methods for Multiphase Flows in Porous Media, Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia, p. 556.
  10. Chun, B., Do, J., Sung, H., Lim, J. (2006), "A study on the reinforcement and environmental impact of LW injection", Journal of the Korean Geo-Environmental Society, Vol. 7, No. 6, pp. 121-131.
  11. Chupin, O., Saiyouri, N., Hicher, P.Y. (2009), "Modeling of a semi-real injection test in sand", Computers and Geotechnics, Vol. 36, No. 6, pp. 1039-1048. https://doi.org/10.1016/j.compgeo.2009.03.014
  12. Kim, J.C., Kim, S.H., Yoo, B.S., Kang, H.J. (2021), "A study on the P~q~t charts applicability for quality improvement of water-sealing&reinforcement grouting in tunneling work underneath the city", Journal of Korean Society of Disaster and Security, Vol. 14, No. 3, pp. 51-63. https://doi.org/10.21729/KSDS.2021.14.3.51
  13. Kim, J.S., Lee, I.M., Jang, J.H., Choi, H. (2009), "Groutability of cement-based grout with consideration of viscosity and filtration phenomenon", International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 33, No. 16, pp. 1771-1797. https://doi.org/10.1002/nag.785
  14. Kim, Y.S., Whittle, A.J. (2009), "Particle network model for simulating the filtration of a microfine cement grout in sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 2, pp. 224-236. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(224)
  15. Korea National Railway (2018), Specification for small diameter steel pipe reinforced sequential grouting method, p. 9.
  16. Li, P., Wang, C.Q., Fan, G.X., Liu, Y., Xiong, J.C. (2021), "Study on time-varying viscosity of cement and sodium silicate grout under seawater condition", Construction and Building Materials, Vol. 269, 121223.
  17. Lianzhen, Z., Xu, H., Qingsong, Z., Yuntian, C., Jun, L. (2023), "Rheological characteristics of cement-sodium silicate grout in its fluid-solid phase transition process", Construction and Building Materials, Vol. 362, 129443.
  18. Liu, J., Li, Y., Zhang, G., Liu, Y. (2019), "Effects of cementitious grout components on rheological properties", Construction and Building Materials, Vol. 227, 116654.
  19. Markou, I.N., Christodoulou, D.N., Papadopoulos, B.K. (2015), "Penetrability of microfine cement grouts: experimental investigation and fuzzy regression modeling", Canadian Geotechnical Journal, Vol. 52, No. 7, pp. 868-882. https://doi.org/10.1139/cgj-2013-0297
  20. Mitchell, J.K. (1981), "Soil improvement-state of the art report", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 4, San Francisco, pp. 509-565.
  21. Nguyen, V.H., Remond, S., Gallias, J.L. (2011), "Influence of cement grouts composition on the rheological behaviour", Cement and Concrete Research, Vol. 41, No. 3, pp. 292-300. https://doi.org/10.1016/j.cemconres.2010.11.015
  22. Park, I.K., Im, J.C. (2004), "Suggestion of a design method for UAM", Journal of the Korean Geotechnical Society, Vol. 20, No. 3, pp. 97-106.
  23. Powers, J.P., Corwin, A.B., Schmall, P.C., Kaeck, W.E. (2007), Construction Dewatering and Groundwater Control: New Methods and Applications, John Wiley & Sons, Hoboken, p. 656.
  24. Seo, H.J., Choi, H., Lee, I.M. (2016), "Numerical and experimental investigation of pillar reinforcement with pressurized grouting and pre-stress", Tunnelling and Underground Space Technology, Vol. 54, pp. 135-144. https://doi.org/10.1016/j.tust.2015.10.018
  25. Shin, H., Jung, H., Lee, Y.J., Kim, N.Y., Ko, S. (2021), "Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 3, pp. 133-149. https://doi.org/10.9711/KTAJ.2021.23.3.133
  26. Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  27. Wang, M., Zhu, Z., Liu, R., Li, S., Zhang, C., Liu, Y., Zhang, L., Bai, J. (2021), "Influence of extreme high-temperature environment and hydration time on the rheology of cement slurry", Construction and Building Materials, Vol. 295, 123684.
  28. Yoon, J., El Mohtar, C.S. (2015), "A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils", Computers and Geotechnics, Vol. 65, pp. 291-301. https://doi.org/10.1016/j.compgeo.2015.01.004
  29. Zhang, L., Yu, R., Zhang, Q., Liu, R., Feng, H., Chu, Y. (2022), "Permeation grouting diffusion mechanism of quick setting grout", Tunnelling and Underground Space Technology, Vol. 124, 104449.
  30. Zhang, W., Li, S., Wei, J., Zhang, Q., Liu, R., Zhang, X., Yin, H. (2018), "Grouting rock fractures with cement and sodium silicate grout", Carbonates and Evaporites, Vol. 33, pp. 211-222. https://doi.org/10.1007/s13146-016-0332-3
  31. Zhu, Z., Wang, M., Liu, R., Zhang, H., Zhang, C., Liu, Y., Bai, J., Zhang, L. (2021), "Study of the viscosity-temperature characteristics of cement-sodium silicate grout considering the time-varying behaviour of viscosity", Construction and Building Materials, Vol. 306, 124818.