DOI QR코드

DOI QR Code

Risk assessment for development of consecutive shield TBM technology

연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가

  • Kibeom Kwon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Chaemin Hwang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sangyeong Park (Future and Fusion Lab of Architecture, Civil and Environmental Engineering, Korea University) ;
  • Byeonghyun Hwang (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 권기범 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 황채민 (고려대학교 건축사회환경공학과) ;
  • 박상영 (고려대학교 미래건설환경융합연구소) ;
  • 황병현 (고려대학교 건축사회환경공학과)
  • Received : 2024.05.17
  • Accepted : 2024.06.26
  • Published : 2024.07.31

Abstract

Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

쉴드 TBM (tunnel boring machine) 시공은 일반적으로 세그먼트 설치를 위해 규칙적으로 굴진을 멈추는 것이 요구되어, TBM 굴착과 세그먼트 설치를 병행하는 연속굴착형 쉴드 TBM의 개발에 대한 연구가 국내외에 추진되고 있다. 하지만, 연속굴착형 쉴드 TBM은 기존 쉴드 TBM과 다른 굴착 공정과 이에 따른 특별한 장비 및 유압 시스템이 요구된다. 또한, 연속굴착형 쉴드 TBM 설계 및 시공 사례가 적으므로 연속굴착형 쉴드 TBM 시공을 위한 사전 리스크 평가가 반드시 수행되어야 한다. 본 논문에서는 연속굴착형 쉴드 TBM에 특화된 4가지 사건과 8가지 요인 간의 인과관계를 규명하였다. 이를 기반으로 전문가 설문조사와 리스크 매트릭스를 이용하여 최종적으로 리스크 등급을 도출하였다. 리스크 평가 결과, 붕괴/지표침하의 영향도와 TBM 선형이탈 관련 인과조합의 발생확률이 높게 평가되었다. 또한, 연속적으로 수행되어야 하는 테일보이드(tail void) 뒷채움 미흡과 추진 잭 손상으로 인한 붕괴/지표침하를 방지하기 위한 리스크 저감조치가 사전에 적용해야 함을 알 수 있었다. 이에 따라, 리스크 저감 조치로서 나선형 세그먼트를 따라 배면 전 범위 탐지가 가능한 비파괴탐사 기술 개발과 순차적 추진 잭 가력 방식 고안 및 최적 페데스탈 각도 선정을 제안하였다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 건설기술연구사업(TBM 굴진향상을 위한 연속굴착 기술개발, RS-2022-00144188)의 지원으로 수행되었으며 이에 깊은 감사를 드립니다.

References

  1. Al-Zuheri, A., Amer, Y., Vlachos, I. (2019), "Risk assessment and analysis of healthcare system using probability-impact matrix", Nursing & Primary Care, Vol. 3, No. 4, pp. 1-4.
  2. Broere, W. (2016), "Urban underground space: solving the problems of today's cities", Tunnelling and Underground Space Technology, Vol. 55, pp. 245-248. https://doi.org/10.1016/j.tust.2015.11.012
  3. Chen, C.N., Huang, W.Y., Tseng, C.T. (2011), "Stress redistribution and ground arch development during tunneling", Tunnelling and Underground Space Technology, Vol. 26, No. 1, pp. 228-235. https://doi.org/10.1016/j.tust.2010.06.012
  4. Cho, J.W., Kim, M.G., Park, H.J., Oh, J.Y., Song, C.H. (2024), "Optimization of thrust forces for consecutive advance of shield TBM and validation test by scaled TBM model", International Journal of the JSRM, Vol. 20, No. 2, pp. 1-4.
  5. Choi, Y.T., Lee, D.G., Kim, M.G., Oh, J.Y., Cho, J.W. (2022), "Continuous excavation type TBM parts modification and control technology for improving TBM performance", Tunnel and Underground Space, Vol. 32, No. 6, pp. 345-352. https://doi.org/10.7474/TUS.2022.32.6.345
  6. Chung, H., Park, J., Kim, B.K., Kwon, K., Lee, I.M., Choi, H. (2021), "A causal network-based risk matrix model applicable to shield TBM tunneling projects", Sustainability, Vol. 13, No. 9, 4846.
  7. Hillson, D. (2002), "Extending the risk process to manage opportunities", International Journal of Project Management, Vol. 20, No. 3, pp. 235-240.
  8. Hyun, K.C., Min, S., Choi, H., Park, J., Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunnelling and Underground Space Technology, Vol. 49, pp. 121-129. https://doi.org/10.1016/j.tust.2015.04.007
  9. Ikwan, F., Sanders, D., Hassan, M. (2021), "Safety evaluation of leak in a storage tank using fault tree analysis and risk matrix analysis", Journal of Loss Prevention in the Process Industries, Vol. 73, 104597.
  10. Jing, L.J., Li, J.B., Zhang, N., Chen, S., Yang, C., Cao, H.B. (2021), "A TBM advance rate prediction method considering the effects of operating factors", Tunnelling and Underground Space Technology, Vol. 107, 103620.
  11. Jung, M. (2013), The comparative study of shield-TBM cycle time through design and construction, Master Thesis, Seoul National University of Science and Technology, pp. 1-62.
  12. Kim, M.G., Cho, J.W., Cha, H.S. (2023), "Investigation of prior technology and development case for consecutive excavation technique of shield TBM", Tunnel and Underground Space, Vol. 33, No. 5, pp. 299-311. https://doi.org/10.7474/TUS.2023.33.5.299
  13. Kwon, K., Kang, M., Hwang, B., Choi, H. (2023a), "Study on risk priority for TBM tunnel collapse based on Bayes theorem through case study", KSCE Journal of Civil and Environmental Engineering Research, Vol. 43, No. 6, pp. 785-791. https://doi.org/10.12652/KSCE.2023.43.6.0785
  14. Kwon, K., Kang, M., Kim, D., Choi, H. (2023b), "Prioritization of hazardous zones using an advanced risk management model combining the analytic hierarchy process and fuzzy set theory", Sustainability, Vol. 15, No. 15, 12018.
  15. Min, S.Y., Einstein, H.H., Lee, J.S., Kim, T.K. (2003), "Application of decision aids for tunneling (DAT) to a drill & blast tunnel", KSCE Journal of Civil Engineering, Vol. 7, pp. 619-628. https://doi.org/10.1007/BF02838325
  16. Moradi, M.R., Farsangi, M.A.E. (2014), "Application of the risk matrix method for geotechnical risk analysis and prediction of the advance rate in rock TBM tunneling", Rock Mechanics and Rock Engineering, Vol. 47, pp. 1951-1960. https://doi.org/10.1007/s00603-013-0464-x
  17. Park, J., Chung, H., Moon, J.B., Choi, H., Lee, I.M. (2016), "Overall risk analysis of shield TBM tunnelling using Bayesian networks (BN) and analytic hierarchy process (AHP)", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 5, pp. 453-467. https://doi.org/10.9711/KTAJ.2016.18.5.453
  18. Shang, W.J., Jing, W.Z., Liu, J., Liu, M. (2023), "Global epidemic of Ebola virus disease and the importation risk into China: an assessment based on the risk matrix method", Biomedical and Environmental Sciences, Vol. 36, No. 1, pp. 86-93.
  19. Siraj, N.B., Fayek, A.R. (2019), "Risk identification and common risks in construction: Literature review and content analysis", Journal of Construction Engineering and Management, Vol. 145, No. 9, 03119004.
  20. Sousa, R.L., Einstein, H.H. (2021), "Lessons from accidents during tunnel construction", Tunnelling and Underground Space Technology, Vol. 113, 103916.
  21. You, K.H., Park, C.M. (2016), "A study on the risk and settlement evaluation of a shield TBM excavated in soft marine sedimentary soils", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 4, pp. 355-364. https://doi.org/10.9711/KTAJ.2016.18.4.355
  22. Zhang, S., Du, C., Sa, W., Wang, C., Wang, G. (2014), "Bayesian-based hybrid simulation approach to project completion forecasting for underground construction", Journal of Construction Engineering and Management, Vol. 140, No. 1, 04013031.