Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT): Grant No. RS-2023-00243752.
References
- Bingham NH, Goldie CM, and Teugels JL (1987). Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge.
- Cai J-J, Einmahl JH, and De Haan L (2011). Estimation of extreme risk regions under multivariate regular variation, The Annals of Statistics, 39, 1803-1826.
- Einmahl JH, Yang F, and Zhou C (2020). Testing the multivariate regular variation model, Journal of Business & Economic Statistics, 39, 907-919. https://doi.org/10.1080/07350015.2020.1737533
- Hall P (1982). On some simple estimates of an exponent of regular variation, Journal of the Royal Statistical Society: Series B (Methodological), 44, 37-42.
- Hill BM (1975). A simple general approach to inference about the tail of a distribution, The Annals of Statistics, 3, 1163-1174.
- Hsing T (1991). On tail index estimation using dependent data, The Annals of Statistics, 19, 1547-1569. https://doi.org/10.1214/aos/1176348261
- Hult H and Lindskog F (2002). Multivariate extremes, aggregation and dependence in elliptical distributions, Advances in Applied Probability, 34, 587-608. https://doi.org/10.1239/aap/1033662167
- Joe H and Li H (2019). Tail densities of skew-elliptical distributions, Journal of Multivariate Analysis, 171, 421-435. https://doi.org/10.1016/j.jmva.2019.01.009
- Kim M (2021). Maximum likelihood estimation of spectral measure of heavy tailed elliptical distribution. In Proceedings of the Autumn Conference of the Korean Data & Information Science Society, Seoul, 119-119.
- Kim M (2022). Simulation of elliptical multivariate regular variation, The Korean Data & Information Science Society, 33, 347-357. https://doi.org/10.7465/jkdi.2022.33.3.347
- Kluppelberg C, Kuhn G, and Peng L (2007). Estimating the tail dependence function of an elliptical distribution, Bernoulli, 13, 229-251.
- Li H and Hua L (2015). Higher order tail densities of copulas and hidden regular variation, Journal of Multivariate Analysis, 138 143-155. https://doi.org/10.1016/j.jmva.2014.12.010
- Resnick SI (2008). Extreme Values, Regular Variation, and Point Processes, Springer Science & Business Media, Berlin.
- Weller GB and Cooley D (2014). A sum characterization of hidden regular variation with likelihood inference via expectation-maximization, Biometrika, 101, 17-36. https://doi.org/10.1093/biomet/ast046