참고문헌
- Naziri Q, Burekhovich SA, Mixa PJ, et al. The trends in robotic-assisted knee arthroplasty: a statewide database study. J Orthop. 2019;16:298-301. https://doi.org/10.1016/j.jor.2019.04.020
- Mancino F, Cacciola G, Di Matteo V, et al. Reconstruction options and outcomes for acetabular bone loss in revision hip arthroplasty. Orthop Rev (Pavia). 2020;12(Suppl 1):8655. https://doi.org/10.4081/or.2020.8655
- Ogilvie A, Kim WJ, Asirvatham RD, Fontalis A, Putzeys P, Haddad FS. Robotic-arm-assisted total hip arthroplasty: a review of the workflow, outcomes and its role in addressing the challenge of spinopelvic imbalance. Medicina (Kaunas). 2022;58:1616. https://doi.org/10.3390/medicina58111616
- Mancino F, Cacciola G, Di Matteo V, et al. Surgical implications of the hip-spine relationship in total hip arthroplasty. Orthop Rev (Pavia). 2020;12(Suppl 1):8656. https://doi.org/10.4081/or.2020.8656
- Fontalis A, Raj RD, Kim WJ, et al. Functional implant positioning in total hip arthroplasty and the role of roboticarm assistance. Int Orthop. 2023;47:573-84. https://doi.org/10.1007/s00264-022-05646-0
- Fontalis A, Putzeys P, Plastow R, et al. Functional component positioning in total hip arthroplasty and the role of roboticarm assistance in addressing spinopelvic pathology. Orthop Clin North Am. 2023;54:121-40. https://doi.org/10.1016/j.ocl.2022.11.003
- Hassani H, Cherix S, Ek ET, Rudiger HA. Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplasty. 2014;29:1273-7. https://doi.org/10.1016/j.arth.2013.12.033
- Huppertz A, Radmer S, Asbach P, et al. Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: radiation exposure and cost analysis. Eur J Radiol. 2011;78:406-13. https://doi.org/10.1016/j.ejrad.2009.11.024
- Della Valle AG, Padgett DE, Salvati EA. Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg. 2005;13:455-62. https://doi.org/10.5435/00124635-200511000-00005
- Sariali E, Mauprivez R, Khiami F, Pascal-Mousselard H, Catonne Y. Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop Traumatol Surg Res. 2012;98:151-8. https://doi.org/10.1016/j.otsr.2011.09.023
- Kobayashi H, Cech A, Kase M, et al. Pre-operative templating in THA. Part II: a CT-based strategy to correct architectural hip deformities. Arch Orthop Trauma Surg. 2020;140:551-62. https://doi.org/10.1007/s00402-020-03341-6 Erratum in: Arch Orthop Trauma Surg. 2020;140:1585 https://doi.org/10.1007/s00402-020-03595-0
- Di Laura A, Henckel J, Hothi H, Hart A. Can 3D surgical planning and patient specific instrumentation reduce hip implant inventory? A prospective study. 3D Print Med. 2020;6:25. https://doi.org/10.1186/s41205-020-00077-2
- Chen X, Wang Y, Ma R, et al. Validation of CT-based three-dimensional preoperative planning in comparison with acetate templating for primary total hip arthroplasty. Orthop Surg. 2022;14:1152-60. https://doi.org/10.1111/os.13298
- Moralidou M, Di Laura A, Henckel J, Hothi H, Hart AJ. Three-dimensional pre-operative planning of primary hip arthroplasty: a systematic literature review. EFORT Open Rev. 2020;5:845-55. https://doi.org/10.1302/2058-5241.5.200046
- Kim JT, Lee J, Lee YK, et al. What is the tolerated width of periacetabular osteophytes to avoid impingement in cement-less THA?: a three-dimensional simulation study. Arch Orthop Trauma Surg. 2018;138:1165-72. https://doi.org/10.1007/s00402-018-2982-1
- Chalmers BP, Sculco PK, Sierra RJ, Trousdale RT, Berry DJ. Iliopsoas impingement after primary total hip arthroplasty: operative and nonoperative treatment outcomes. J Bone Joint Surg Am. 2017;99:557-64. https://doi.org/10.2106/JBJS.16.00244
- Finsterwald M, Mancino F, Waters G, et al. Endoscopic tendon release for iliopsoas impingement after total hip arthroplasty-excellent clinical outcomes and low failure rates at short-term follow-up. Arthroscopy. Published online August 5, 2023; https://doi.org/10.1016/j.arthro.2023.07.040
- Barrack RL, Krempec JA, Clohisy JC, et al. Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am. 2013;95:1760-8. https://doi.org/10.2106/JBJS.L.01704
- Beverland DE, O'Neill CK, Rutherford M, Molloy D, Hill JC. Placement of the acetabular component. Bone Joint J. 2016;98-B(1 Suppl A):37-43. https://doi.org/10.1302/0301-620X.98B1.36343
- Sariali E, Mouttet A, Pasquier G, Durante E, Catone Y. Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck. J Bone Joint Surg Br. 2009;91:333-40. https://doi.org/10.1302/0301-620X.91B3.21390
- Bukowski BR, Sandhu KP, Bernatz JT, et al. CT required to perform robotic-assisted total hip arthroplasty can identify previously undiagnosed osteoporosis and guide femoral fixation strategy. Bone Joint J. 2023;105-B:254-60. https://doi.org/10.1302/0301-620X.105B3.BJJ-2022-0870.R1
- Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 Adults. J Bone Miner Res. 2016;31:1835-40. https://doi.org/10.1002/jbmr.2856
- Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Joint J. 2016;98-B:461-7. https://doi.org/10.1302/0301-620X.98B4.37201 Erratum in: Bone Joint J. 2020;102-B:1782. https://doi.org/10.1302/0301-620X.102B12.BJJ-2020-00013
- Bernatz JT, Brooks AE, Squire MW, Illgen RI 2nd, Binkley NC, Anderson PA. Osteoporosis is common and undertreated prior to total joint arthroplasty. J Arthroplasty. 2019;34:1347-53. https://doi.org/10.1016/j.arth.2019.03.044
- Mainard D, Barbier O, Knafo Y, Belleville R, Mainard-Simard L, Gross JB. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res. 2017;103:531-6. https://doi.org/10.1016/j.otsr.2017.03.001
- Knafo Y, Houfani F, Zaharia B, Egrise F, Clerc-Urmes I, Mainard D. Value of 3D preoperative planning for primary total hip arthroplasty based on biplanar weightbearing radiographs. Biomed Res Int. 2019;2019:1932191. https://doi.org/10.1155/2019/1932191
- Wu P, Liu Q, Fu M, et al. Value of computed tomography-based three-dimensional pre-operative planning in cup placement in total hip arthroplasty with dysplastic acetabulum. J Invest Surg. 2019;32:607-13. https://doi.org/10.1080/08941939.2018.1444828
- Schiffner E, Latz D, Jungbluth P, et al. Is computerised 3D templating more accurate than 2D templating to predict size of components in primary total hip arthroplasty? Hip Int. 2019;29:270-5. https://doi.org/10.1177/1120700018776311
- Inoue D, Kabata T, Maeda T, et al. Value of computed tomography-based three-dimensional surgical preoperative planning software in total hip arthroplasty with developmental dysplasia of the hip. J Orthop Sci. 2015;20:340-6. https://doi.org/10.1007/s00776-014-0683-3
- Kniesel B, Konstantinidis L, Hirschmuller A, Sudkamp N, Helwig P. Digital templating in total knee and hip replacement: an analysis of planning accuracy. Int Orthop. 2014;38:733-9. https://doi.org/10.1007/s00264-013-2157-1
- Schmidutz F, Steinbruck A, Wanke-Jellinek L, Pietschmann M, Jansson V, Fottner A. The accuracy of digital templating: a comparison of short-stem total hip arthroplasty and conventional total hip arthroplasty. Int Orthop. 2012;36:1767-72. https://doi.org/10.1007/s00264-012-1532-7
- Bishi H, Smith JBV, Asopa V, Field RE, Wang C, Sochart DH. Comparison of the accuracy of 2D and 3D templating methods for planning primary total hip replacement: a systematic review and meta-analysis. EFORT Open Rev. 2022;7:70-83. https://doi.org/10.1530/EOR-21-0060
- Huppertz A, Lembcke A, Sariali el-H, et al. Low dose computed tomography for 3D planning of total hip arthroplasty: evaluation of radiation exposure and image quality. J Comput Assist Tomogr. 2015;39:649-56. https://doi.org/10.1097/RCT.0000000000000271
- Kaiser D, Hoch A, Rahm S, Stern C, Sutter R, Zingg PO. Combining the advantages of 3-D and 2-D templating of total hip arthroplasty using a new tin-filtered ultra-low-dose CT of the hip with comparable radiation dose to conventional radiographs. Arch Orthop Trauma Surg. 2023;143:5345-52. https://doi.org/10.1007/s00402-022-04697-7
- Christen B, Tanner L, Ettinger M, Bonnin MP, Koch PP, Calliess T. Comparative cost analysis of four different computer-assisted technologies to implant a total knee arthroplasty over conventional instrumentation. J Pers Med. 2022;12:184. https://doi.org/10.3390/jpm12020184
- Hassebrock JD, Makovicka JL, Clarke HD, Spangehl MJ, Beauchamp CP, Schwartz AJ. Frequency, cost, and clinical significance of incidental findings on preoperative planning images for computer-assisted total joint arthroplasty. J Arthroplasty. 2020;35:945-9.e1. https://doi.org/10.1016/j.arth.2019.11.030
- Tran G, Khalil LS, Wrubel A, Klochko CL, Davis JJ, Soliman SB. Incidental findings detected on preoperative CT imaging obtained for robotic-assisted joint replacements: clinical importance and the effect on the scheduled arthroplasty. Skeletal Radiol. 2021;50:1151-61. https://doi.org/10.1007/s00256-020-03660-0
- Kayani B, Konan S, Thakrar RR, Huq SS, Haddad FS. Assuring the long-term total joint arthroplasty: a triad of variables. Bone Joint J. 2019;101-B(1_Supple_A):11-8. https://doi.org/10.1302/0301-620X.101B1.BJJ-2018-0377.R1
- Illgen RL Nd, Bukowski BR, Abiola R, et al. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 2017;30:365-72.
- El Bitar YF, Jackson TJ, Lindner D, Botser IB, Stake CE, Domb BG. Predictive value of robotic-assisted total hip arthroplasty. Orthopedics. 2015;38:e31-7. https://doi.org/10.3928/01477447-20150105-57
- Matsuki Y, Imagama T, Tokushige A, Yamazaki K, Sakai T. Accuracy of cup placement using computed tomography-based navigation system in total hip arthroplasty through the direct anterior approach. J Orthop Sci. 2023;28:370-5. https://doi.org/10.1016/j.jos.2021.10.018
- Clement ND, Patrick-Patel RS, MacDonald D, Breusch SJ. Total hip replacement: increasing femoral offset improves functional outcome. Arch Orthop Trauma Surg. 2016;136:1317-23. https://doi.org/10.1007/s00402-016-2527-4
- Kurtz WB, Ecker TM, Reichmann WM, Murphy SB. Factors affecting bony impingement in hip arthroplasty. J Arthroplasty. 2010;25:624-34.e1-2. https://doi.org/10.1016/j.arth.2009.03.024
- Suarez-Ahedo C, Gui C, Martin TJ, Chandrasekaran S, Lodhia P, Domb BG. Robotic-arm assisted total hip arthroplasty results in smaller acetabular cup size in relation to the femoral head size: a matched-pair controlled study. Hip Int. 2017;27:147-52. https://doi.org/10.5301/hipint.5000418
- Mancino F, Jones CW, Sculco TP, Sculco PK, Maccauro G, De Martino I. Survivorship and clinical outcomes of constrained acetabular liners in primary and revision total hip arthroplasty: a systematic review. J Arthroplasty. 2021;36:3028-41. https://doi.org/10.1016/j.arth.2021.04.028
- Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217-20. https://doi.org/10.2106/00004623-197860020-00014
- Callanan MC, Jarrett B, Bragdon CR, et al. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011;469:319-29. https://doi.org/10.1007/s11999-010-1487-1
- Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res. 2016;474:386-91. https://doi.org/10.1007/s11999-015-4432-5
- Tezuka T, Heckmann ND, Bodner RJ, Dorr LD. Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability. J Arthroplasty. 2019;34:3-8. https://doi.org/10.1016/j.arth.2018.10.034
- Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472:329-36. https://doi.org/10.1007/s11999-013-3253-7
- Domb BG, Redmond JM, Louis SS, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty. 2015;30:2208-18. https://doi.org/10.1016/j.arth.2015.06.059
- Clement ND, Gaston P, Bell A, et al. Robotic arm-assisted versus manual total hip arthroplasty. Bone Joint Res. 2021;10:22-30. https://doi.org/10.1302/2046-3758.101.BJR-2020-0161.R1
- Kamara E, Robinson J, Bas MA, Rodriguez JA, Hepinstall MS. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: is acetabular positioning improved in the learning curve? J Arthroplasty. 2017;32:125-30. https://doi.org/10.1016/j.arth.2016.06.039
- Hohmann E, Bryant A, Tetsworth K. A comparison between imageless navigated and manual freehand technique acetabular cup placement in total hip arthroplasty. J Arthroplasty. 2011;26:1078-82. https://doi.org/10.1016/j.arth.2010.11.009
- Parratte S, Argenson JN. Validation and usefulness of a computer-assisted cup-positioning system in total hip arthroplasty. A prospective, randomized, controlled study. J Bone Joint Surg Am. 2007;89:494-9. https://doi.org/10.2106/JBJS.F.00529
- Dorr LD, Malik A, Dastane M, Wan Z. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009;467:119-27. https://doi.org/10.1007/s11999-008-0598-4
- Marcovigi A, Ciampalini L, Perazzini P, Caldora P, Grandi G, Catani F. Evaluation of native femoral neck version and final stem version variability in patients with osteoarthritis undergoing robotically implanted total hip arthroplasty. J Arthroplasty. 2019;34:108-15. https://doi.org/10.1016/j.arth.2018.06.027
- O'Connor PB, Thompson MT, Esposito CI, et al. The impact of functional combined anteversion on hip range of motion: a new optimal zone to reduce risk of impingement in total hip arthroplasty. Bone Jt Open. 2021;2:834-41. https://doi.org/10.1302/2633-1462.210.BJO-2021-0117.R1
- Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14:231-42. https://doi.org/10.1016/8756-3282(93)90146-2
- Desai AS, Dramis A, Board TN. Leg length discrepancy after total hip arthroplasty: a review of literature. Curr Rev Musculoskelet Med. 2013;6:336-41. https://doi.org/10.1007/s12178-013-9180-0
- Hofmann AA, Skrzynski MC. Leg-length inequality and nerve palsy in total hip arthroplasty: a lawyer awaits! Orthopedics. 2000;23:943-4. https://doi.org/10.3928/0147-7447-20000901-20
- Tipton SC, Sutherland JK, Schwarzkopf R. The assessment of limb length discrepancy before total hip arthroplasty. J Arthroplasty. 2016;31:888-92. https://doi.org/10.1016/j.arth.2015.10.026
- Sariali E, Mueller M, Klouche S. A higher reliability with a computed tomography scan-based three dimensional technique than with a two dimensional measurement for lower limb discrepancy in total hip arthroplasty planning. Int Orthop. 2021;45:3129-37. https://doi.org/10.1007/s00264-021-05148-5
- Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM. Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty. 2005;20:414-20. https://doi.org/10.1016/j.arth.2004.01.016
- Lecerf G, Fessy MH, Philippot R, et al. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res. 2009;95:210-9. https://doi.org/10.1016/j.otsr.2009.03.010
- Luca DiGiovanni P, Gasparutto X, Armand S, Hannouche D. The modern state of femoral, acetabular, and global offsets in total hip arthroplasty: a narrative review. EFORT Open Rev. 2023;8:117-26. https://doi.org/10.1530/EOR-22-0039
- Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H. The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop. 2014;85:123-7. https://doi.org/10.3109/17453674.2014.889980
- Cassidy KA, Noticewala MS, Macaulay W, Lee JH, Geller JA. Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty. 2012;27:1863-9. https://doi.org/10.1016/j.arth.2012.05.001
- Renkawitz T, Weber T, Dullien S, et al. Leg length and offset differences above 5mm after total hip arthroplasty are associated with altered gait kinematics. Gait Posture. 2016;49:196-201. https://doi.org/10.1016/j.gaitpost.2016.07.011
- Mahmood SS, Mukka SS, Crnalic S, Wretenberg P, SayedNoor AS. Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop. 2016;87:36-41. https://doi.org/10.3109/17453674.2015.1091955
- Robinson M, Bornstein L, Mennear B, et al. Effect of restoration of combined offset on stability of large head THA. Hip Int. 2012;22:248-53. https://doi.org/10.5301/HIP.2012.9283
- Kanawade V, Dorr LD, Banks SA, Zhang Z, Wan Z. Precision of robotic guided instrumentation for acetabular component positioning. J Arthroplasty. 2015;30:392-7. https://doi.org/10.1016/j.arth.2014.10.021
- Peng Z, Lin X, Kuang X, Teng Z, Lu S. The application of topical vancomycin powder for the prevention of surgical site infections in primary total hip and knee arthroplasty: a meta-analysis. Orthop Traumatol Surg Res. 2021;107:102741. https://doi.org/10.1016/j.otsr.2020.09.006
- Dastane M, Dorr LD, Tarwala R, Wan Z. Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop Relat Res. 2011;469:429-36. https://doi.org/10.1007/s11999-010-1554-7
- Anderson CG, Brilliant ZR, Jang SJ, et al. Validating the use of 3D biplanar radiography versus CT when measuring femoral anteversion after total hip arthroplasty: a comparative study. Bone Joint J. 2022;104-B:1196-201. https://doi.org/10.1302/0301-620X.104B11.BJJ-2022-0194.R2
- Brenneis M, Braun S, van Drongelen S, et al. Accuracy of preoperative templating in total hip arthroplasty with special focus on stem morphology: a randomized comparison between common digital and three-dimensional planning using biplanar radiographs. J Arthroplasty. 2021;36:1149-55. https://doi.org/10.1016/j.arth.2020.10.016
- Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CW. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25:3398-404. https://doi.org/10.1007/s00330-015-3756-6
- Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc. 2017;25:853-62. https://doi.org/10.1007/s00167-015-3853-8
- Rojas EO, Barbachan Mansur NS, Dibbern K, et al. Weight-bearing computed tomography for assessment of foot and ankle deformities: the Iowa experience. Iowa Orthop J. 2021;41:111-9. https://doi.org/10.1177/2473011421S00419
- Fontalis A, Kayani B, Haddad IC, Donovan C, Tahmassebi J, Haddad FS. Patient-reported outcome measures in conventional total hip arthroplasty versus robotic-arm assisted arthroplasty: a prospective cohort study with minimum 3 years' follow-up. J Arthroplasty. 2023;38(7S2):S324-9. https://doi.org/10.1016/j.arth.2023.04.045