DOI QR코드

DOI QR Code

Takagi-Sugeno Fuzzy Model for Greenhouse Climate

  • Imen Haj Hamad (LARA, National Engineering School of Carthage, University of Carthage) ;
  • Amine Chouchaine (UR-LAPER, Faculty of Sciences of Tunis, University of Tunis EL Manar) ;
  • Hajer Bouzaouache (LARA, National Engineering School of Tunis, University of Tunis El Manar)
  • Received : 2024.07.05
  • Published : 2024.07.30

Abstract

This paper investigates the identification and modeling of a climate greenhouse. Given real climate data from greenhouse installed in the LAPER laboratory in Tunisia, the objective of this paper is to propose a solution of the problem of nonlinear time variant inputs and outputs of greenhouse internal climate. Based on fuzzy logic technique combined with least mean squares (lms) a robust greenhouse climate model for internal temperature prediction is proposed. The simulation results are presented to demonstrate the effectiveness of the identification approach and the power of the implemented Takagi-Sugeno Fuzzy model based Algorithm.

Keywords

References

  1. Imen Haj Hamad, Hajer Bouzaouache, "Gestion et Instrumentation dune Serre Agricole : Ralisation Exprimentale",5me Confrence Internationale des Energies Renouvelables (CIER 2017). Sousse, Tunisie, 2017.
  2. J.B. Cunha. "Greenhouse Climate Models: An Overview" EFITA 2003Conference, pp. 823-829.
  3. Imen Haj Hamad, Amine Chouchaine, Hajer Bouzaouache, "Experimental validation of a dynamic analysis and fuzzy logic controller of greenhouse air temperature" IJCSNS International Journal of Computer Science and Network Security, 2021.
  4. Imen Haj Hamad, Amine Chouchaine, Hajer Bouzaouache, "On Modeling Greenhouse Air-Temperature: an Experimental Validation" IEEE International Multi-Conference on Systems, Signals & Devices, 19th,2021.
  5. G.P.A. Bot. "Greenhouse climate: from physical processes to a dynamic model" Proefschrift Wageningen, 1983.
  6. J.G. Pieters, J.M. Deltour. "Performances of Greenhouses with the Presence of Condensation on Cladding Materials". Journal of Agricultural Engineering Research, 1997, vol. 68(2), pp. 125-137. https://doi.org/10.1006/jaer.1997.0187
  7. S.H. Li, C.W. Ma, J.F. Zhang, et al. "Thermal model of multi-span greenhouses with multi-layer convers" Transactions of the Chinese Society of Agricultural Engineering, 2004, vol. 20(3), pp. 217-221.
  8. H.U. Frausto, J.G. Pieters, J.M. Deltour. "Modelling Greenhouse Temperature by means of Auto Regressive Models" Biosystems Engineering, 2003, vol. 84(2), pp. 147-157. https://doi.org/10.1016/S1537-5110(02)00239-8
  9. L.L. Qin, C. Shi, G. Wu, et al. "Modeling of Ventilation Window Air Temperature System in Greenhouse Based on Hybrid System" Journal of System Simulation, 2010, vol. 22(4), pp. 833-836.
  10. Trabelsi, A., Lafont, F., Kamoun, M., Enea, G., 2007. Fuzzy identification of a greenhouse. Appl. Soft Comput. 7, 1092-1101. https://doi.org/10.1016/j.asoc.2006.06.009
  11. Gorrostieta-Hurtado, E., Sotomayor-Olmedo, A., Pedraza-Ortega, J.C., Aceves- Fernandez, M.A., Villasenor-Carillo, U.G., 2010. Modeling key parameters for greenhouse using fuzzy clustering technique. Proc. Conf. Of Ninth Mexican International Conference on Artificial Intelligence 9, 103-106.
  12. Salgado, P., Cunha, J.B., 2005. Greenhouse climate hierarchical fuzzy modelling. Control Eng. Pract. 13, 613-628. https://doi.org/10.1016/j.conengprac.2004.05.007
  13. Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: theory and application. New York: academic press.
  14. Wang, L.-X. (1997). A course in fuzzy systems and control. Englewood Cliffs, NJ: Prentice-Hall PTR.
  15. Abdel-Rahman, E.M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., Ismail, R., 2014. A comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of swiss chard grown under different irrigation water sources using hyperspectral data. Comput. Electr. Agric. 106, 11-19. https://doi.org/10.1016/j.compag.2014.05.001
  16. Babuska, R., 1998. Fuzzy Modeling for Control, International Series in Intelligent Technologies. Kluwer Academic Publishers, Aachen, Germany.
  17. H Bouzaouache, "Calculus of variations and nonlinear optimization-based algorithm for optimal control of hybrid systems with controlled switching", Complexity 2017.
  18. T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man Cybernetics 15 (1) (1985) 16-132. https://doi.org/10.1109/TSMC.1985.6313399
  19. J.C. Bakker, G.P.A. Bot, H. Challa, N.J. van de Braak, Greenhouse Climate Control: An Integrated Approach, Wageningen Press, Wageningen, the Netherlands, 1995.
  20. A. Fink, M. Fischer, O. Nelles, Supervision of nonlinear adaptive controllers based on fuzzy models, Control Eng. 8 (2000) 1093-1105. https://doi.org/10.1016/S0967-0661(00)00059-9
  21. Mamdani, E.H. Application of fuzzy logic to approximate reasoning using linguistic systems. Fuzzy Sets and Systems 26 (1977) 1182-1191.
  22. F. Lafont, J.-F. Balmat, Fuzzy control of the greenhouse climate, in:International Confrence on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications, ACIDCA'2000 Vol. Systems Analysis and Automatic Control, Monastir, Tunisia, 22-24 March, (2000), pp. 118-122.
  23. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191-203. https://doi.org/10.1016/0098-3004(84)90020-7
  24. R.L. Cannon, J.V. Dave, J.C. Bezdek. "Efficient Implementation of the Fuzzy c-Means Clustering Algorithms" Pattern Analysis & Machine Intelligence IEEE Transactions on, 1986, vol. 8(2), pp. 248-255. https://doi.org/10.1109/TPAMI.1986.4767778
  25. J.C. Gomez, A. Jutan, E. Baeyens. "Wiener model identification and predictive control of a pH neutralisation process" IEE Proceedings -Control Theory and Applications, 2004, vol. 151(3), pp. 329-338. https://doi.org/10.1049/ip-cta:20040438