Acknowledgement
이 논문은 행정안전부 기후변화대응 AI 기반 풍수해 위험도 예측기술개발 사업의 지원을 받아 수행된 연구임(2022-MOIS61-002).
References
- Arora, V.K., and Boer, G.J. (2001). "Effects of simulated climate change on the hydrology of major river basins." Journal of Geophysical Research: Atmospheres, Vol. 106, No. D4, pp. 3335-3348. https://doi.org/10.1029/2000JD900620
- Assem, H., Ghariba, S., Makrai, G., Johnston, P., Gill, L., and Pilla, F. (2017). "Urban water flow and water level prediction based on deep learning." In Machine Learning and Knowledge Discovery in Databases: European Conference, Springer, Skopje, Macedonia, Vol. 10536, pp. 317-329.
- Baek, S.S., Pyo, J., and Chun, J.A. (2020). "Prediction of water level and water quality using a CNN-LSTM combined deep learning approach." Water, Vol. 12, No. 12, 3399.
- Bitew, M.M., and Gebremichael, M. (2011). "Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model." Water Resources Research, Vol. 47, No. 6. doi: 10.1029/2010WR009917.
- Godin, F., Degrave, J., Dambre, J., De Neve, W. (2018). "Dual rectified linear units (DReLUs): A replacement for tanh activation functions in quasi-recurrent neural networks." Pattern Recognition Letters, Vol. 116, pp. 8-14. https://doi.org/10.1016/j.patrec.2018.09.006
- Han, H., Abitew, T.A., Park, S., Green, C.H., and Jeong, J. (2023). "Spatiotemporal evaluation of satellite-based precipitation products in the Colorado river basin." Journal of Hydrometeorology, Vol. 24, No. 10, pp. 1739-1754. https://doi.org/10.1175/JHM-D-23-0003.1
- Han, H., and Morrison, R.R. (2022). "Improved runoff forecasting performance through error predictions using a deep-learning approach." Journal of Hydrology, Vol. 608, 127653.
- Han, H., Choi, C., Kim, J., Morrison, R.R., Jung, J., and Kim, H.S. (2021). "Multiple-depth soil moisture estimates using artificial neural network and long short-term memory models." Water, Vol. 13, No. 18, 2584.
- Harris, A., Rahman, S., Hossain, F., Yarborough, L., Bagtzoglou, A. C., and Easson, G. (2007). "Satellite-based flood modeling using TRMM-based rainfall products." Sensors, Vol. 7, No. 12, pp. 3416-3427. https://doi.org/10.3390/s7123416
- Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543. doi: 10.3390/w10111543.
- Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., and Stocker, E.F. (2007). "The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales." Journal of Hydrometeorology, Vol. 8, No. 1, pp. 38-55. https://doi.org/10.1175/JHM560.1
- Joyce, R.J., Janowiak, J.E., Arkin, P.A., and Xie, P. (2004). "CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution." Journal of Hydrometeorology, Vol. 5, No. 3, pp. 487-503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
- Kay, A.L., Rudd, A.C., Fry, M., Nash, G., and Allen, S. (2021). "Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections." Climate Risk Management, Vol. 31, 100263.
- Kim, D., Han, H., Wang, W. and Kim, H. S. (2022). "Improvement of deep learning models for river water level prediction using complex network method." Water, Vol. 14, 466.
- Kim, J., and Han, H. (2021). "Evaluation of the CMORPH high-resolution precipitation product for hydrological applications over South Korea." Atmospheric Research, Vol. 258, 105650.
- Le, M.H., Lakshmi, V., Bolten, J., and Du Bui, D. (2020). "Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins." Journal of Hydrology, Vol. 586, 124820.
- Lee, M., Kim, J., Yoo, Y., Kim, H.S., Kim, S.E., and Kim, S. (2021). "Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM." Journal of Korea Water Resources Association, Vol. 54, No. spc1, pp. 1061-1069. https://doi.org/10.3741/JKWRA.2021.54.S-1.1061
- Li, G., Liu, Z., Zhang, J., Han, H., and Shu, Z. (2024). "Bayesian model averaging by combining deep learning models to improve lake water level prediction." Science of The Total Environment, Vol. 906, 167718.
- Li, W., Gao, X., Hao, Z. and Sun, R. (2022). "Using deep learning for precipitation forecasting based on spatio-temporal information: A case study." Climate Dynamics, Vol. 58, pp. 443-457. https://doi.org/10.1007/s00382-021-05916-4
- Park, K., Jung, Y., Seong, Y., and Lee, S. (2022). "Development of deep learning models to improve the accuracy of water levels time series prediction through multivariate hydrological data." Water, Vol. 14, No. 3, 469.
- Schreider, S.Y., Smith, D.I., and Jakeman, A.J. (2000). "Climate change impacts on urban flooding." Climatic Change, Vol. 47, pp. 91-115. https://doi.org/10.1023/A:1005621523177
- Sorooshian, S., Hsu, K.L., Gao, X., Gupta, H.V., Imam, B., and Braithwaite, D. (2000). "Evaluation of PERSIANN system satellite-based estimates of tropical rainfall." Bulletin of the American Meteorological Society, Vol. 81, No. 9, pp. 2035-2046. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
- Szandala, T. (2021). Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired Neurocomputing, Springer, Singapore, pp. 203-224.
- Tarekegn, N., Abate, B., Muluneh, A., and Dile, Y. (2022). "Modeling the impact of climate change on the hydrology of Andasa watershed." Modeling Earth Systems and Environment, Vol. 8, No. 1, pp. 103-119. https://doi.org/10.1007/s40808-020-01063-7
- Tessema, N., Kebede, A., and Yadeta, D. (2021). "Modelling the effects of climate change on streamflow using climate and hydrological models: the case of the Kesem sub-basin of the Awash River basin, Ethiopia." International Journal of River Basin Management, Vol. 19, No. 4, pp. 469-480. https://doi.org/10.1080/15715124.2020.1755301
- Tobin, K.J., and Bennett, M.E. (2010). "Adjusting satellite precipitation data to facilitate hydrologic modeling." Journal of Hydrometeorology, Vol. 11, No. 4, pp. 966-978. https://doi.org/10.1175/2010JHM1206.1
- Velpuri, N.M., Senay, G.B., and Asante, K.O. (2012). "A multisource satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data." Hydrology and Earth System Sciences, Vol. 16, No. 1, pp. 1-18. https://doi.org/10.5194/hess-16-1-2012
- Wang, Q., and Wang, S. (2020). "Machine learning-based water level prediction in Lake Erie." Water, Vol. 12, No. 10, 2654.
- Xiang, Z., Yan, J., and Demir, I. (2020). "A rainfall-runoff model with LSTM-based sequence-to-sequence learning." Water Resources Research, Vol. 56, No. 1, e2019WR025326.
- Xie, P., Joyce, R., Wu, S., Yoo, S. H., Yarosh, Y., Sun, F. Lin, R. (2017). "Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998." Journal of Hydrometeorology, Vol. 18, pp. 1617-1641. https://doi.org/10.1175/JHM-D-16-0168.1
- Xie, Z., Liu, Q. and Cao, Y. (2021). "Hybrid deep learning modeling for water level prediction in Yangtze River." Intelligent Automation & Soft Computing, Vol. 28, pp. 153-166. https://doi.org/10.32604/iasc.2021.016246