Acknowledgement
이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1F1A1054433, 2021RIS-003)
References
- Rathee, K., Dhull, V., Dhull, R. and Singh, S., "Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review," Biochem. Biophys. Rep., 5, 35-54(2016).
- Madden, J., Vaughan, E., Thompson, M., Riordan, A. O., Galvin, P., Lacopino, D. and Teixeira, S. R., "Electrochemical Sensor for Enzymatic Lactate Detection Based on Laser-scribed Graphitic Carbon Modified with Platinum, Chitosan and Lactate Oxidase," Talanta, 246, 123492(2022).
- Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., "Lactate in Human Sweat: A Critical Review of Research to the Present Day," J. Physiol. Sci., 62, 429-440(2012). https://doi.org/10.1007/s12576-012-0213-z
- Chung, M., Fortunato, G. and Radacsi, N., "Wearable Flexible Sweat Sensors for Healthcare Monitoring; A Review," J. R. Soc. Interface, 16, 20190217(2019).
- Shitanda, I., Takamatsu, K., Niiyama, A., Mikawa, T., Hoshi, Y., Itagaki, M. and Tsujimura, S., "High-power Lactate/O2 Enzymatic Biofuel Cell Based on Carbon Cloth Electrodes Modified with MgO-templated Carbon," J. Power Sources, 436, 226844(2019).
- Bandodkar, A. J., You, J.-M., Kim, N.-H., Gu, Y., Kumar, R., Mohan, A. M. V., Kurniawan, J., Imani, S., Nakagawa, T., Parish, B., Parthasarathy, M., Mercier, P. P., Xu, S. and Wang, J., "Soft, Stretchable, High Power Density Electronic Skin-based Biofuel Cells for Scavenging Energy from Human Sweat," Energy Environ. Sci., 10, 1581-1589(2017). https://doi.org/10.1039/C7EE00865A
- Choi, H., Yeo, M., Kang, Y., Kim, H. J., Park, S. G., Jang, E., Park, S. H., Kim, E. and Kang, S., "Lactate Oxidase/CatalaseDisplaying Nanopaticles Efficiently Consume Lactate in The Tumor Microenvironment to Effectively Suppress Tumor Growth," J. Nanobiotechnol., 21, 5(2023).
- Andrus, L. P., Unruh, R., Wisniewski, N. A. and McShane, M. J., "Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels," Biosensors, 5, 398-416(2015). https://doi.org/10.3390/bios5030398
- Sokic-Lazic, D., Andrade, A. R. D. and Minteer, S. D., "Utilization of Enzyme Cascade for Complete Oxidation of Lactate in an Enzymatic Biofuel Cell," Electrochim. Acta, 56, 10772-10775 (2011). https://doi.org/10.1016/j.electacta.2011.01.050
- Shi, K., Selvarajan, V., Yang, Y.-Y. and Kim, C.-J., "Fabrication and Characterization of Carbon Nanotube-modified Carbon Paperbased Lactate Oxidase-catalase Electrode," Korean Chem. Eng. Res., 61, 1-8(2023).
- McKee, T. and Mckee J. R., Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
- Pichardo, S., Gutierrez-Praena, D., Puerto, M., Sanchez, E., Grilo, A., Camean, A. M. and Jos, A., "Oxidative Stress Response to Carboxylic Acid Functionalized Single Wall Carbon Nanotubes on the Human Intestinal Cell Line Caco-2," Toxicol In Vitro, 26, 672-677(2012). https://doi.org/10.1016/j.tiv.2012.03.007
- Timur, S., Haghighi, B., Tkac, J., Pazarlioglu, N., Telefoncu, A., and Gorton, L., "Electrical Wiring of Pseudomonas putida and Pseudomonas fluorescens with Osmium Redox Polymers," Bioelectrochemistry, 71, 38-45(2007). https://doi.org/10.1016/j.bioelechem.2006.08.001
- Kim, H.-H., Mano, N., Zhang, Y., and Heller, A., "A Miniature Membrane-less Biofuel Cell Operating under Physiological Condition at 0.5 V," J. Electrochem. Soc., 150, A209-A213(2003). https://doi.org/10.1149/1.1534095
- Zaib, Q. and Ahmad, F., "Optimization of Carbon Nanotube Dispersions in Water Using Response Surface Methodology," ACS Omega, 4, 86-92(2019). https://doi.org/10.1021/acsomega.8b02201
- Koh, B. and Cheng, W., "The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes," Pharm. Nanotechnol., 104, 2594-2599(2015).
- Neikirk, K., Marshall, A. G., Kula, B., Smith, N., Leblanc, S., and Hinton Jr., A., "MitoTracker: A Useful Tool in Need of Better Alternatives," Eur. J. Cell Biol., 102, 151371(2023).
- Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G., "Rhodamine 123 As a Probe of Mitochondrial Membrane Potential: Evaluation of Proton Flux Through F0 during ATP Synthesis," Biochim. Biophys. Acta, 1606, 137-146(2003). https://doi.org/10.1016/S0005-2728(03)00110-5
- Manke, et al., "Effect of Fiber Length on Carbon NanotubeInduced Fibrogenesis," Int. J. Mol. Sci., 15, 7444-7461(2014). https://doi.org/10.3390/ijms15057444
- Zhang, Y, Selvarajan, V., Shi, K. and Kim, C.-J., "Fabrication and Characterization of Glucose-Oxidation-Trehalase Electrode Based on Nanomaterial-Coated Carbon Paper," RSC Adv., 13, 33918-33928(2023). https://doi.org/10.1039/D3RA01554H
- Cai, B., Li, M., Zhou, J. Tan, L., Li, D. and Ao, Z., "Effect of Oxygen-Containing Functional Groups at SWCNT on the Formation of Sodium and Lithium Dendrites," Surf. Interfaces., 40, 103074(2023).
- Khan, N., Anwer, A. H., Ahmad, A., Sabir, S., Sevda, S. and Khan, M. Z., "Investigation of CNT/PPy-Modified Carbon Paper Electrodes Under Anaerobic and Aerobic Conditions for Phenol Bioremediation in Microbial Fuel Cells," ACS Omega., 5, 471-480(2020). https://doi.org/10.1021/acsomega.9b02981
- Kuznetsova, A. et al., "Oxygen-containing Functional Groups on Single-wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies," J. Am. Chem. Soc., 123, 10699-10704(2001). https://doi.org/10.1021/ja011021b
- Benko, Aleksandra. et al., "Covalently Bonded Surfaces Functional Groups on Carbon Nanotubes: From Molecular Modeling to Practical Applications," Nanoscale, 13, 10152-10166(2001). https://doi.org/10.1039/D0NR09057C
- Barreca, D., Neri, G., Scala, A., Fazio, E., Gentile, D., Rescifina, A. and Piperno, A., "Covalently Immobilized Catalase on Functionalized Graphene: Effect on the Activity, Immobilization Efficiency, and Tetramer Stability," Biomater. Sci., 6, 3231-3240(2018). https://doi.org/10.1039/C8BM00850G
- Willey, J. M., Sherwood, L. M. and Woolverton, C. J., Prescott, Harley, and Klein's Microbiology, 7th ed., McGraw-Hill, New York, NY(2008).
- Jayakumar, K., Bennett, R. and Leech, D., "Electrochemical Glucose Biosensor Based on an Osmium Redox Polymer and Glucose Oxidase Grafted to Carbon Nanotubes: A Design-of-Experiments Optimisation of Current Density and Stability," Electrochim. Acta., 371, 137845(2021).
- Vasylieva, N., Barnych, B., Meiler, A., Maucler, C., Pollegioni, L., Lin, J.-S., Barbier, D. and Marinesco, S., "Covalent Enzyme Immobilization by Poly(Ethylene Glycol) Diglycidyl Ether (PEGDE) for Microelectrode Biosensor Preparation," Biosens. Bioelectron., 26, 3993-4000(2011). https://doi.org/10.1016/j.bios.2011.03.012
- Alhansa, R., Singhb, A., Singhala, C., Naranga, J., Wadhwaa, S. and Mathurb, A., "Comparative Analysis of Single-walled and Multi-walled Carbon Nanotubes for Electrochemical Sensing of Glucose on Gold Printed Circuit Boards," Mater. Sci. Eng., C90, 273-279(2018).
- Yuwen, et al., "Carbon Nanotubes: A Powerful Bridge for Conductivity and Flexibility in Electrochemical Glucose Sensors," J. Nanotechnol., 21, 320(2023).
- Sokic-Lazic, D., Andrade, A. R. and Minteer, S. D., "Utilization of Enzyme Cascades for Complete Oxidation of Lactate in an Enzymatic Biofuel Cell," Electrochim. Acta., 56, 10772-10775(2011). https://doi.org/10.1016/j.electacta.2011.01.050
- Mannella, C. A. and Wang, Q., "Permeability of the Mitochondrial Outer Membrane to Organic Cations," Biochim. Biophys. Acta., 981, 363-366(1989). https://doi.org/10.1016/0005-2736(89)90049-7
- Nishikawa, M., Nojima, S., Akiyama, T., Sankawa, U. and Inoue, K., "Interation of Digitonin and Its Analogs with Membrane Cholesterol," J. Biochem., 96, 1231-1239(1984). https://doi.org/10.1093/oxfordjournals.jbchem.a134941
- Shitanda, I., Hirano, Kai, Loew, N., Watanabe, H., Itagaki, M. and Mikawa, T., "High-performance, Two-step/Bi-enzyme Lactate Biofuel Cell with Lactate Oxidase and Pyruvate Oxidase," J. Power Sources, 498, 229935(2021).