DOI QR코드

DOI QR Code

Characterization and performance of post treated PVDF hollow fiber membrane

  • Eman S. Sayed (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Hayam F. Shaalan (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Magda I. Marzouk (Organic Chemistry Department, Faculty of Science, Ain Shams University) ;
  • Heba A. Hani (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre)
  • Received : 2023.08.03
  • Accepted : 2024.07.09
  • Published : 2024.04.25

Abstract

Modification of Polyvinylidene fluoride (PVDF) hollow fiber membranes (HFMs) characteristics and performance were investigated via post treatment using different oxidants. sodium hypochlorite (NaOCl), hydrogen peroxide (H2O2) and potassium persulfate (KPS). Fourier transform infrared (FTIR) and Proton nuclear magnetic resonance (1H-NMR) results revealed no structural differences after post treatment. Cross-sectional micrographs show finger-like structures at the outer and inner walls of the HFMs and sponge-like structures in middle, where NaOCl and KPS post treated fibers exhibited a decrease in finger-like structures in addition to aggregates appearing on the surface, consequently leading to an increase in the surface roughness (Ra) from 48 nm to 52.8nm and 56 nm, respectively. Hydrogen peroxide post treatment only was observed to decrease the water contact angle from 98° to 81.4°. It was also observed that the elongation at break and the modulus deceased after NaOCl post treatment from 34.5 to 28.5% and from 19.3 Mpa to 16.6 Mpa, respectively. Moreover, pure water flux after H2O2 post treatment increased from 87.8 LMH/bar to 113 LMH/bar at 0.45 bar, while no changes were detected for the methylene blue dye rejection (74%) between raw and hydrogen peroxide post treated fibers at the same pressure. According to the findings hydrogen peroxide post treated PVDF HFMs have the most uniform surfaces, with almost no alterations in structural and mechanical properties or porosities with enhanced hydrophilicity and pure water flux maintaining appropriate rejection. Therefore, it is considered an efficient surface modifying agent for UF/NF membranes or low-pressure separators.

Keywords

Acknowledgement

The authors would like to thank the Ministry of International Cooperation for securing funds to initiate and support the Hollow Fibre Membranes Program at the National Research Centre from the Islamic Development Bank and Kuwait fund for Arab Economic Development.

References

  1. Abdullah, S.Z. and Berube, P.R. (2013), "Assessing the effects of sodium hypochlorite exposure on the characteristics of PVDF based membranes", Water Res., 47(14), 5392-5399. https://doi.org/10.1016/j.watres.2013.06.018
  2. Alkindy, M.B., Naddeo, V., Banat, F. and Hasan, S.W. (2020), "Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment", Water Sci. Technol., 81(7), 1354-1364. https://doi.org/10.2166/wst.2019.347
  3. Bi, Q., Li, Q., Tian, Y., Lin, Y. and Wang, X. (2013), "Hydrophilic modification of poly (vinylidene fluoride) membrane with poly (vinyl pyrrolidone) via a cross-linking reaction", J. Appl. Polym. Sci., 127(1), 394-401. https://doi.org/10.1002/app.37629.
  4. Bonyadi, S. and Chung, T.S. (2009), "Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach", J. Membr. Sci., 331 (1-2), 66-74. https://doi.org/10.1016/j.memsci.2009.01.014.
  5. Drioli, E., Ali, A., Simone, S., Macedonio, F., Al-Jlil, S., Al Shabonah, F., Al-Romaih, H., Al-Harbi, O., Figoli, A. and Criscuoli, A. (2013), "Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications", Sep. Purif. Technol., 115, 27-38. https://doi.org/10.1016/j.seppur.2013.04.040.
  6. Eleshmawi, I. (2008), "Effect of LiCl filler on the structure and morphology of PVDF films", J. Elastomers Plast., 40(3), 211-221. https://doi.org/10.1016/j.matchemphys.2007.06.045.
  7. Fatima, F., Du, H. and Kommalapati, R.R. (2023), "A sequential membrane process of ultrafiltration forward osmosis and reverse osmosis for poultry slaughterhouse wastewater treatment and reuse", Membranes, 13(3), 1-18. https://doi.org/10.3390/membranes13030296
  8. Gan, X., Lin, T., Jiang, F. and Zhang, X. (2021), "Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types", J. Membr. Sci., 640, 119770. https://doi.org/10.1016/j.memsci.2021.119770.
  9. Gao, F., Wang, J., Zhang, H., Zhang, Y. and Hang, M.A. (2016), "Effects of sodium hypochlorite on structural/surface characteristics, filtration performance and fouling behaviors of PVDF membranes", J. Membr. Sci., 519, 22-31. https://doi.org/10.1016/j.memsci.2016.07.024.
  10. Goh, K., Setiawan, L., Wei, L., Si, R., Fane, A.G., Wang, R. and Chen, Y. (2015), "Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process", J. Membr. Sci., 474 244-253. https://doi.org/10.1016/j.memsci.2014.09.057
  11. Golcuk, S., Muftuoglu, A.E., Celik, S.U. and Bozkurt, A. (2013), "Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting", J. Polym. Res., 20, 1-10. https://doi.org/10.1007/s10965-013-0144-2
  12. Hernandez, S., Lei, S., Rong, W., Ormsbee, L. and Bhattacharyya, D. (2016), "Functionalization of flat sheet and hollow fiber microfiltration membranes for water applications", ACS Sust. Chem. Eng, 4 (3), 907-918. https://doi.org/10.1021/acssuschemeng.5b01005.
  13. Jung, Y.J., Kiso, Y., Yamada, T., Shibata, T. and Lee, T.G. (2006), "Chemical cleaning of reverse osmosis membranes used for treating wastewater from a rolling mill process", Desalination, 190(1-3), 181-188. https://doi.org/10.1016/j.desal.2005.08.009.
  14. Laizhou Song , Z.Z., Shizhe SONG and Zhiming GAO (2007), "Preparation and characterization of the modified polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane", J. Mater. Sci.Technol., 23(1), 55.
  15. Li, K., Li, S., Su, Q., Wen, G. and Huang, T. (2019), "Effects of hydrogen peroxide and sodium hypochlorite aging on properties and performance of polyethersulfone ultrafiltration membrane", Int. J. Environ. Res., 16 (20), 3972. https://doi.org/10.3390/ijerph16203972.
  16. Liang, S., Kang, Y., Tiraferri, A., Giannelis, E.P., Huang, X. and Elimelech, M. (2013), "Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles", ACS Appl. Mater. Interf., 5(14), 6694-6703. https://doi.org/10.1021/am401462e.
  17. Ling, R., Yu, L., Pham, T.P.T., Shao, J., Chen, J.P. and Reinhard, M. (2017), "The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure", Membr. Sci , 524 529-536. https://doi.org/10.1016/j.memsci.2016.11.041.
  18. Matsuyama, H., Rajabzadeh, S., Karkhanechi, H. and Jeon, S. (2017), "PVDF hollow fibers membranes", Compr. Membr. Sci. Eng., 1, 137-189. https://doi.org/10.1016/B978-0-12-409547-2.12244-9.
  19. Mohammadi, B., Yousefi, A.A. and Bellah, S.M. (2007), "Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films", Polym. Test., 26(1), 42-50. https://doi.org/10.1016/j.polymertesting.2006.08.003.
  20. Mukherjee, D., Kulkarni, A. and Gill, W.N. (1996), "Chemical treatment for improved performance of reverse osmosis membranes", Desalination, 104 (3), 239-249. https://doi.org/10.1016/0011-9164(96)00047-1
  21. Naim, R., Khulbe, K., Ismail, A. and Matsuura, T. (2013), "Characterization of PVDF hollow fiber membrane for CO2 stripping by atomic force microscopy analysis", Sep. Purif. Technol., 109, 98-106. https://doi.org/10.1016/j.seppur.2013.02.036.
  22. Ozay, Y., Yabalak, E. and Dizge, N. (2022), "Effects of hydrogen peroxide, temperature and treatment time on degradation properties of polyethersulfone ultrafiltration membrane", Turk. J. Chem., 46 (1), 206-216.
  23. Pellegrin, B., Prulho, R., Rivaton, A., Therias, S., Gardette, J.L., Gaudichet-Maurin, E. and Causserand, C. (2013), "Multi-scale analysis of hypochlorite induced PES/PVP ultrafiltration membranes degradation", J. Membr. Sci., 447, 287-296. https://doi.org/10.1016/j.memsci.2013.07.026
  24. Purnawan, I., Angputra, D., Debora, S.C., Karamah, E.F., Febriasari, A. and Kartohardjono, S. (2021), "Polyvinylidene fluoride membrane with a polyvinylpyrrolidone additive for tofu industrial wastewater treatment in combination with the coagulation-flocculation process", Membranes, 11(12), 948. https://doi.org/10.3390/membranes11120948
  25. Puspitasari, V., Granville, A., Le-Clech, P. and Chen, V. (2010), "Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane", Sep. Purif. Technol., 72(3), 301-308. https://doi.org/10.1016/j.seppur.2010.03.001
  26. Ravereau, J., Fabre, A., Brehant, A., Bonnard, R., Sollogoub, C. and Verdu, J. (2016), "Ageing of polyvinylidene fluoride hollow fiber membranes in sodium hypochlorite solutions", J. Membr. Sci., 505 174-184. https://doi.org/10.1016/j.memsci.2015.12.063.
  27. Regula, C., Carretier, E., Wyart, Y., Gesan-Guiziou, G., Vincent, A., Boudot, D. and Moulin, P. (2014), "Chemical cleaning/ disinfection and ageing of organic UF membranes: A review", Water Res., 56, 325-365. https://doi.org/10.1016/j.watres.2014.02.050.
  28. Ren, L., Yu, S., Yang, H., Li, L., Cai, L., Xia, Q., Shi, Z. and Liu, G. (2021), "Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism", J. Membr. Sci., 625, 119141. https://doi.org/10.1016/j.memsci.2021.119141.
  29. Ross, G., Watts, J., Hill, M. and Morrissey, P. (2000), "Surface modification of poly (vinylidene fluoride) by alkaline treatment1. The degradation mechanism", Polymer, 41(5), 1685-1696. https://doi.org/10.1016/S0032-3861(00)00328-1.
  30. Simone, S., Figoli, A., Criscuoli, A., Carnevale, M., Rosselli, A. and Drioli, E. (2010), "Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD", J. Membr. Sci., 364 (1-2), 219-232. https://doi.org/10.1016/j.memsci.2010.08.013.
  31. Sorour, M.H., Hani, H.A., Shaalan, H.F. and El-Toukhy, M. (2021), "Fabrication and characterization of hydrophobic PVDF-based hollow fiber membranes for vacuum membrane distillation of seawater and desalination brine", Egypt. J. Chem., 64(9), 4889-4899. https://doi.org/10.21608/ejchem.2021.68699.3500.
  32. Tavangar, T., Karimi, M., Rezakazemi, M., Reddy, K.R. and Aminabhavi, T.M. (2020), "Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes", Chem. Eng. J., 385 123787. https://doi.org/10.1016/j.cej.2019.123787
  33. Tewfik, S.R., Sorour, M.H., Shaalan, H.F. and Hani, H.A. (2018), "Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties", Membr. Water Treat., 9(1), 43-51. https://doi.org/10.12989/mwt.2018.9.1.043
  34. Turken, T., Sengur-Tasdemir, R., Ates-Genceli, E., Tarabara, V.V. and Koyuncu, I. (2019), "Progress on reinforced braided hollow fiber membranes in separation technologies: A review", J. Water Proc. Eng., 32 (100938), 1-10. https://doi.org/10.1016/j.jwpe.2019.100938
  35. Vatanpour, V., Hazrati, M., Sheydaei, M. and Dehqan, A. (2022), "Investigation of using UV/H2O2 pre-treatment process on filterability and fouling reduction of PVDF/TiO2 nanocomposite ultrafiltration membrane", Chem. Eng. Proc. Proc. Intens., 170, 108677. https://doi.org/10.1016/j.cep.2021.108677.
  36. Vatanpour, V., Yekavalangi, M.E. and Safarpour, M. (2016), "Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance", Sep. Purif. Technol., 163, 300-309. https://doi.org/10.1016/j.seppur.2016.03.011.
  37. Wienk, I., Meuleman, E., Borneman, Z., Van Den Boomgaard, T. and Smolders, C. (1995), "Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly (vinyl pyrrolidone)", J. Polym. Sci., Part A: Polym. Chem., 33(1), 49-54. https://doi.org/10.2175/106143008X266779
  38. Xu, C., Huang, W., Lu, X., Yan, D., Chen, S. and Huang, H. (2012), "Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property", Radiat. Phys. Chem., 81(11), 1763-1769. https://doi.org/10.1016/j.radphyschem.2012.07.001.
  39. Xu, Q., Chen, Y., Xiao, T. and Yang, X. (2021), "A facile method to control pore structure of PVDF/SiO2 composite membranes for efficient oil/water purification", Membranes, 11(11), 1-17. https://doi.org/10.3390/membranes11110803
  40. Yang, Z., Ma, X.H. and Tang, C.Y. (2018), "Recent development of novel membranes for desalination", Desalination, 434, 37-59. https://doi.org/10.1016/j.desal.2017.11.046
  41. Ying, L., Kang, E. and Neoh, K. (2003), "Characterization of membranes prepared from blends of poly (acrylic acid)-graft-poly (vinylidene fluoride) with poly (N-isopropylacrylamide) and their temperature-and pH-sensitive microfiltration", J. Membr. Sci., 224(1-2), 93-106. https://doi.org/10.1016/j.memsci.2003.07.002.
  42. Yu, S., Zhang, X., Li, F. and Zhao, X. (2018), "Poly (vinyl pyrrolidone) modified poly (vinylidene fluoride) ultrafiltration membrane via a two-step surface grafting for radioactive wastewater treatment", Sep. Purif. Technol., 194, 404-409. https://doi.org/10.1016/j.seppur.2017.10.051.
  43. Zhang, Y., Wang, J., Gao, F., Chen, Y. and Zhang, H. (2017), "A comparison study: The different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes", Water Res., 109, 227-236. https://doi.org/10.1016/j.watres.2016.11.022.