DOI QR코드

DOI QR Code

Improving the Calorific Value of Nyamplung (Calophyllum inophyllum L.) Seed Shell Pellets by Torrefaction Treatment for Their Use as a Renewable Energy Resource

  • Johanes Pramana Gentur SUTAPA (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Geraldy KIANTA (Alumni of Faculty of Forestry, Universitas Gadjah Mada) ;
  • Budi LEKSONO (Research Center for Applied Botany, National Research and Innovation Agency (BRIN)) ;
  • Ahmad Harun HIDAYATULLAH (Alumni of Master of Forest Science Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2024.03.20
  • Accepted : 2024.04.28
  • Published : 2024.07.25

Abstract

Nyamplung (Calophyllum inophyllum L.) seeds, which account for 40% of the fruit, have been used as a raw material for biofuels, and the seed shells remaining after their extraction are wasted. In this study, we investigated the potential of waste Nyamplung seed shells in the form of pellets as a biomass energy resource. A completely randomized research design was implemented to evaluate the effects of torrefaction and heat treatment on the quality of produced pellets. Two observed treatments, namely, particle size (0.18-0.25, 0.25-0.43, and 0.43-0.84 mm) and torrefaction temperature (200℃, 225℃, and 250℃), were investigated. Our results showed that the calorific value of torrefied Nyamplung seed-shell pellets ranged from 4,245.60 to 4,528.00 cal/g, fulfilling the Indonesia Nasional Standard (≥ 4,000 cal/g). The quality of pellets were the best when produced from raw materials with a particle size of 0.18-0.25 mm and torrefaction temperature of 225℃. Thus, we concluded that waste Nyamplung seed shells are a good raw material for the production of pellets.

Keywords

Acknowledgement

We sincerely thank the Faculty of Forestry of Universitas Gadjah Mada, especially the Laboratory of Bioenergy and Biomaterial Conversion, for supporting our study.

References

  1. American Society for Testing and Materials [ASTM]. 2001. Standard Test Method for Single Pellet Crush Strength of Formed Catalyst Shapes. ASTM D4179-01. ASTM International, West Conshohocken, PA, USA. 
  2. American Society for Testing and Materials [ASTM]. 2007. Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM D1762-84. ASTM International, West Conshohocken, PA, USA. 
  3. American Society for Testing and Materials [ASTM]. 2010. Standard Test Method for Gross Calorivic Value of Coal and Coke by the Adiabatic Bomb Calorimeter. ASTM D5865-10. ASTM International, West Conshohocken, PA, USA. 
  4. Aytenew, G., NIgus, G., Bedewi, B. 2018. Improvement of the energy density of rice husk using dry and chemical treated torrefaction. Journal of Advanced Chemical Engineering 8(1): 1000185. 
  5. Badan Standardisasi Nasional. 2018. Pelet Biomassa Untuk Energy. SNI 8675:2018. Badan Standardisasi Nasional, Jakarta, Indonesia. 
  6. Bustomi, S. 2012. Yamplung (Calophyllum inophyllum L.): Sumber Energi Biofuel Yang Potensial. Badan Penelitian dan Pengembangan Kehutanan, Jakarta, Indonesia. 
  7. Cahyani, N., Yunianti, A.D., Suhasman, Pangestu, K.T.P., Pari, G. 2023. Characteristics of bio pellets from spent coffee grounds and pinewood charcoal based on composition and grinding method. Journal of the Korean Wood Science and Technology 51(1): 23-37. 
  8. Cahyanti, M.N., Doddapaneni, T.R.K.C., Kikas, T. 2020. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresource Technology 301: 122737. 
  9. Chandra, T.C., Mirna, M.M., Sunarso, J., Sudaryanto, Y., Ismadji, S. 2009. Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers 40(4): 457-462. 
  10. Chen, D., Gao, A., Ma, Z., Fei, D., Chang, Y., Shen, C. 2018. In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Bioresource Technology 253: 148-153. 
  11. Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M. 2011. The first step towards a 100% renewable energy-system for Ireland. Applied Energy 88: 502-507. 
  12. Damayanti, R., Lusiana, N., Prasetyo, J. 2017. Studi pengaruh ukuran partikel dan penambahan perekat tapioka terhadap karakteristik biopelet dari kulit coklat (Theobroma cacao L.) sebagai bahan bakar alternatif terbarukan. Jurnal Industri Teknologi Pertanian 11(1): 51-60. 
  13. Garcia-Maraver, A., Popov, V., Zamorano, M. 2011. A review of European standards for pellet quality. Renewable Energy 36: 3537-3540. 
  14. Harun, N.Y., Afzal, M.T. 2016. Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Engineering 148: 93-99. 
  15. Hazra, F., Sari, N. 2011. To biomassa tempurung buah nyamplung (Calophyllum spp.) untuk pembuatan briket arang sebagai bahan bakar alternatif. Jurnal Sains Terapan 1(1): 8-13. 
  16. Hidyatullah, A.H., Sutapa, J.P.G., Listyanto, T. 2022. Pengaruh ukuran partikel bahan baku terhadap kualitas pelet ranting kaliandra (Calliandra calothyrsus) dari limbah pakan ternak kambing. Jurnal Ilmu dan Teknologi Kayu Tropis 20(1): 31-39. 
  17. Jang, E.S. 2022. Experimental investigation of the sound absorption capability of wood pellets as an ecofriendly material. Journal of the Korean Wood Science and Technology 50(2): 126-133. 
  18. Ju, Y.M., Lee, H.W., Kim, A., Jeong, H., Chea, K.S., Lee, J., Ahn, B.J., Lee, S.M. 2020. Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open hearth kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. 
  19. Jung, S.J., Kim, S.H., Chung, I.M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy 83: 322-327. 
  20. Kartika, I.A., Sari, D.D.K., Pahan, A.F., Suparno, O., Ariono, D. 2017. Ekstraksi minyak dan resin nyamplung dengan campuran pelarut heksan-etanol. Jurnal Teknologi Industri Pertanian 27(2): 161-171. 
  21. Kim, A., Kim, N.H. 2019. Effect of heat treatment and particle size on the crystalline properties of wood cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310. 
  22. Kim, Y.S. 2016. Research trend of the heat-treatment of wood for improvement of dimensional stability and resistance to biological degradation. Journal of the Korean Wood Science and Technology 44(3): 457-476. 
  23. Lau, H.S., Ng, H.K., Gan, S., Jourabchi, S.A. 2018. Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 144: 75-81. 
  24. Lee, H.W., Kim, S.B. 2020. Study on the estimation of proper compression ratios for Korean domestic wood species by single pellet press. Journal of the Korean Wood Science and Technology 48(4): 450-457. 
  25. Lee, J., Ahn, B.J., Kim, E.J. 2015. Effects of the torrefaction process on the fuel characteristics Larix kaempferi C. Journal of the Korean Wood Science and Technology 43(2): 196-205. 
  26. Leksono, B., Hasnah, T.M., Windyarini, E. 2017. Conservation and zero waste concept of biodiesel industry based on Calophyllum inophyllum plantation. In: Yogyakarta, Indonesia, Proceedings of IUFRO - INAFOR Joint International Conference 2017, pp. 163-174. 
  27. Leksono, B., Windyarini, E., Hasnah, T., Rahman, S.A., Baral, B. 2019. Calophyllum inophyllum for green energy and landscape restoration: Plant growth, biofuel content, associate waste utilization and agroforestry prospect. In: Phuket, Thailand, Proceedings of 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), pp. 1-7. 
  28. Leksono, B., Windyarini, E., Hasnah, T.M. 2014. Budidaya Tanaman Nyamplung (Calophyllum inophyllum L.) untuk Bioenergi dan Prospek Pemanfaatan Lainnya. IPB Press, Jakarta, Indonesia. 
  29. Manouchehrinejad, M., Mani, S. 2018. Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy 118: 93-104. 
  30. Matali, S., Rahman, N.A., Idris, S.S., Yaacob, N., Alias, A.B. 2016. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Engineering 148: 671-678. 
  31. Poddar, S., Kamruzzaman, M., Sujan, S.M.A., Hossain, M., Jamal, M.S., Gafur, M.A., Khanam, M. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 131: 43-48. 
  32. Primadita, D.S., Kumara, I.N.S., Ariastina, W.G. 2020. A review on biomass for electricity generation in Indonesia. Journal of Electrical, Electronics and Informatics 4(1): 1-9. 
  33. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006. More efficient biomass gasification via torrefaction. Energy 31(15): 3458-3470. 
  34. Senthil, R., Mohan, K. 2015. Comparison of yield and fuel properties of thermal and catalytic calophyllum seed shell pyrolitic oil. In: Viluppuram, India, International Conference on Recent Advancement in Mechanical Engineering & Technology, pp. 119-126. 
  35. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D. 2011. REVIEW: A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology 7(5): 384-401. 
  36. Speight, J.G. 2015. Assessing Fuels for Gasification: Analytical and Quality Control Techniques for Coal. In: Gasification for Synthetic Fuel Production: Fundamentals, Processes and Applications, Ed. by Luque, R. and Speight, J.G. Woodhead, Sawston, UK. 
  37. Stelte, W., Nielsen, N.P.K., Hansen, H.O., Dahl, J., Shang, L., Sanadi, A.R. 2013. Reprint of: Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy 53: 105-112. 
  38. Sutapa, J.P.G., Hidyatullah, A.H. 2023. Torrefaction for improving quality of pellets derived from calliandra wood. Journal of the Korean Wood Science and Technology 51(5): 381-391. 
  39. Sutapa, J.P.G., Prasetyadi, G.V. 2023. Torrefaction for upgrading the quality of merbau wood waste pellets. Environmental Research, Engineering and Management 79(3): 52-59. 
  40. Tumuluru, J.S., Ghiasi, B., Soelberg, N.R., Sokhansanj, S. 2021. Biomass torrefaction process, product properties, reactor types, and moving bed reactor design concepts. Frontiers in Energy Research 9: 728140.
  41. van Loo, S., Koppejan, J. 2008. The Handbook of Biomass Combustion and Co-firing. Earthscan/James & James, London, UK. 
  42. Wang, Z., Lim, C.J., Grace, J.R., Li, H., Parise, M.R. 2017. Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor. Bioresource Technology 244: 281-288. 
  43. Wistara, N.J., Rohmatullah, M.A., Febrianto, F., Pari, G., Lee, S.H., Kim, N.H. 2017. Effect of bark content and densification temperature on the properties of oil palm trunk-based pellets. Journal of the Korean Wood Science and Technology 45(6): 671-681. 
  44. Yang, I., Han, G.S. 2018. Comparison of domestic and overseas allowable standards related to emissions from wood pellet combustion. Journal of the Korean Wood Science and Technology 46(5): 553-564. 
  45. Yang, I., Jeong, H., Lee, J.J., Lee, S.M. 2019. Relation- ship between lignin content and the durability of wood pellets fabricated using Larix kaempferi C. sawdust. Journal of the Korean Wood Science and Technology 47(1): 110-123. 
  46. Yokoyama, S., Matsumura, Y. 2008. The Asian biomass handbook: A guide for biomass production and utilization. The Japan Institute of Energy 1: 61-62. 
  47. Yun, H., Wang, Z., Wang, R., Bi, X., Chen, W.H. 2021. Identification of suitable biomass torrefaction operation envelops for auto-thermal operation. Frontiers in Energy Research 9: 636938. 
  48. Zalsabila, A., Syafii, W., Priadi, T., Syahidah. 2024. Anti-termite activity of tamanu bark extract (Calophyllum inophyllum L.). Journal of the Korean Wood Science and Technology 52(2): 134-144.