DOI QR코드

DOI QR Code

Optimizing Nitrobenzene Synthesis Catalyzed by Sulfated Silica (SO4/SiO2) through Response Surface Methodological Approach

  • Aan Sabilladin (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Aldino Javier Saviola (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Karna Wijaya (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Aulia Sukma Hutama (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Mokhammad Fajar Pradipta (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Wahyu Dita Saputri (Research Center for Quantum Physics, National Research and Innovation Agency (BRIN)) ;
  • Hilda Ismail (Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada) ;
  • Budhijanto Budhijanto (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Won-Chun Oh (Department of Advanced Materials and Engineering, Hanseo University) ;
  • Balasubramani Ravindran (Department of Environmental Energy and Engineering, Kyonggi University)
  • Received : 2023.10.27
  • Accepted : 2024.06.26
  • Published : 2024.07.27

Abstract

Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (℃), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 ℃. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.

Keywords

Acknowledgement

The authors would like to express their gratitude to Universitas Gadjah Mada for funding this research through the Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) Grant Project with contract number 1679/UN1/DITLIT/DITLIT/PT.01.03/2022.

References

  1. G. P. Tulandi, S. Sudewi and W. A. Lolo, Pharmacon, 4, 168 (2015).
  2. K. Rahardja and T. H. Tjay, Obat-Obat Penting: Khasiat, Penggunaan, Dan Efek-Efek Sampingnya, p. 312-320, Elex Media Komputindo, Jakarta, Indonesia (2007).
  3. P. Sestili and C. Fimognari, Front. Pharmacol., 11, 579944 (2020).
  4. V. Mane, M. Lalaso, S. Waghmode, K. D. Jadhav, M. K. Dongare and P. S. Dagade, IOSR J. Appl. Chem., 7, 50 (2014).
  5. S. W. Gong, L. J. Liu, Q. Zhang and L. Y. Wang, Bull. Korean Chem. Soc., 33, 1279 (2012).
  6. A. B. Kulal, M. M. Kasabe, P. V. Jadhav, M. K. Dongare and S. B. Umbarkar, Appl. Catal., A, 574, 105 (2019).
  7. J. Liu, Y. Wang, S. Gong, W. Duan and X. Huang, J. Braz. Chem. Soc., 32, 1270 (2021).
  8. K. Wijaya, A. D. Ariyanti, I. Tahir, A. Syoufian, A. Rachmat and Hasanudin, Nano Hybrids Compos., 19, 46 (2018).
  9. A. Aneu, K. Wijaya and A. Syoufian, Silicon, 13, 2265 (2021).
  10. K. Amri, A. Sabilladin, R. A. Pratika, A. Sudarmanto, H. Ismail, Budhijanto, M. F. Lestari, W. C. Oh and K. Wijaya, Korean J. Mater. Res., 33, 265 (2023).
  11. A. Zarei, L. Khazdooz, H. Aghaei, M. M. Gheisari, S. Alizadeh and L. Golestanifar, Tetrahedron, 73, 6954 (2017).
  12. D. C. Montgomery, Design and Analysis of Experiments, 8th ed., p. 1-23, Wiley, Hoboken, USA (2013).
  13. A. Doniavi, A. Hosseini and G. Ranjbary, Int. J. Eng., Trans. C, 29, 1307 (2016).
  14. S. Chowdhury, F. Yusof, M. O. Faruck and N. Sulaiman, Procedia Eng., 148, 992 (2016).
  15. I. Tahir, J. Millevania, K. Wijaya, Mudasir, R. A. Wahab and W. Kurniawati, Results Eng., 17, 100919 (2023).
  16. H. J. Jeon, S. C. Yi and S. G. Oh, Biomaterials, 24, 4921 (2003).
  17. N. R. E. Radwan, M. Hagar, T. H. Afifi, F. Al-Wadaani and R. M. Okasha, Catalysts, 8, 36 (2018).
  18. K. B. Ghoreishi, N. Asim, M. A. Yarmo and M. W. Samsudin, Chem. Pap., 68, 1194 (2014).
  19. M. V. Khedkar, S. B. Somvanshi, A. V. Humbe and K. M. Jadhav, J. Non-Cryst. Solids, 511, 140 (2019).
  20. B. M. Vinoda, M. Vinuth, D. B. Yadav and J. Manjanna, J. Environ. Anal. Toxicol., 5, 1000336 (2015).
  21. A. P. Koskin, I. V. Mishakov and A. A. Vedyagin, Resour.- Effic. Technol., 2, 118 (2016).
  22. A. I. Ahmed, S. A. El-Hakam, S. E. Samra, A. A. El-Khouly and A. S. Khder, Colloids Surf., A, 317, 62 (2008).
  23. M. Niwa, S. Nishikawa and N. Katada, Microporous Mesoporous Mater., 82, 105 (2005).
  24. G. K. Pakem, K. B. Ginting and M. A. Kleden, J. Differ., 1, 28 (2019).
  25. S. Keshani, A. C. Luqman, M. M. Nourouzi, A. R. Russly and B. Jamilah, Int. Food Res. J., 17, 733 (2010).
  26. G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (2018).
  27. R. Agustriyanto, L. Sapei, G. Rosaline and R. Setiawan, IOP Conf. Ser.: Mater. Sci. Eng., 172, 012045 (2017). https://doi.org/10.1088/1757-899X/172/1/012045
  28. A. J. Saviola, K. Wijaya, W. D. Saputri, L. Hauli, A. K. Amin, H. Ismail, B. Budhijanto, W. C. Oh, W. Wangsa and P. Prastyo, Appl. Nanosci., 13, 6575 (2023).
  29. D. K. Deodhar, A. S. Tipnis and S. D. Samant, Indian J. Chem., 49B, 1552 (2010).
  30. S. B. M. Chandra, R. C. Ravindra, C. R. Madhuranthakam, P. B. S. Jai and Y. S. Bhat, Ind. Eng. Chem. Res., 50, 3829 (2011).
  31. M. A. Surati, S. Jauhari and K. R. Desai, Appl. Sci. Res., 4, 645 (2012).
  32. S. Sana, K. R. Reddy, K. C. Rajanna, M. Venkateswarlu and M. M. Ali, Int. J. Org. Chem., 2, 233 (2012).
  33. V. Umrigar, M. Chakraborty and P. A. Parikh, Chem. Eng. Res. Des., 117, 369 (2017).