DOI QR코드

DOI QR Code

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee (Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jinho Kim (Display Material Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2024.06.18
  • Accepted : 2024.07.08
  • Published : 2024.07.27

Abstract

AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.

Keywords

Acknowledgement

This work was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF2021M3H4A3A02086780).

References

  1. M. S. H. Al-Furjan, L. Shan, X. Shen, M. S. Zarei, M. H. Hajmohammad and R. Kolahch, J. Mater. Res. Technol., 19, 2930 (2022).
  2. J. S. Lee and T. Y. Lim, J. Korean Cryst. Growth Cryst. Technol., 23, 44 (2013).
  3. K. L. Loewenstein, The Manufacturing Technology of Continuous Glass Fibres, 3rd ed., p.31, Elsevier Science Publishers, Camberley, UK (1993).
  4. A. J. Majumdar and J. F. Ryder, Glass Technol., 9, 78 (1968).
  5. A. Paul, J. Mater. Sci., 12, 2246 (1977).
  6. A. Paktiawal and M. Alam, Mater. Today: Proc., 47, 4758 (2021).
  7. Y. K. Ryu and Y. Kim., J. Korean Cryst. Growth Cryst. Technol., 19, 208 (2009).
  8. S. M. Song, J. B. Jang, B. S. Cho, J. H. Kim, Y. R. Kim and M. H. Kim., J. Architect. Inst. Korea, 23, 202 (2003).
  9. K. D. Kim and S. G. Kang, J. Korean Cryst. Growth Cryst. Technol., 17, 277 (2007).
  10. T. Y. Lim, S. S. Jeong, J. H. Hwang and J. H. Kim, J. Korean Cryst. Growth Cryst. Technol., 20, 1 (2010).
  11. R. R. Menezes, H. S. Ferreira, G. A. Neves and H. C. Ferreira, J. Eur. Ceram. Soc., 25, 1149 (2005).
  12. M. Dondi, G. Guarini and I. Venturi, J. Eur. Ceram. Soc., 22, 1737 (2002).
  13. K. W. Kim, Y. S. Doh and X. F. Li, J. Korean Soc. Agric. Eng., 43, 132 (2001).
  14. S. M. Han, D. Y. Shin and S. K. Kang, J. Korean Ceram. Soc., 35, 575 (1998).
  15. B. Suleimenova, B. Aimbetov, D. Zhakupov, D. Shah and Y. Sarbassov, Energies, 15, 5785 (2022).
  16. J. S. Lee, M. J. Lee, T. Y. Lim, Y. J. Lim, D. W. Jeon, S. K. Hyun and J. H. Kim, Mater. Trans., 58, 705 (2017).
  17. J. S. Lee, M. J. Lee, T. Y. Lim, Y. J. Lim, D. W. Jeon, S. K. Hyun and J. H. Kim, Korean J. Met. Mater., 55, 4 (2017).
  18. F. T. Wallenberger, R. Naslain, J. B. Macchesney and H. D. Ackler, Advanced Inorganic Fibers, p.146, Springer New York, USA (1999).
  19. F. T. Wallenberger, R. Naslain, J. B. Macchesney and H. D. Ackler, Advanced Inorganic Fibers, p.132, Springer New York, USA (1999).
  20. T. S. Kim, D. S. Kil, H. S. June, E. H. Kang and S. S. Yoon, Anal. Sci. Technol., 13, 775 (2000).
  21. H. J. Park and S. M. Park, Compos. Res., 23, 43 (2010).
  22. K. L. Loewenstein, The Manufacturing Technology of Continuous Glass Fibres, 3rd ed., p.119, Elsevier, Amsterdam, Netherlands (1993).
  23. B. Wei, H. Cao and S. Song, Mater. Des., 31, 4244 (2010).