DOI QR코드

DOI QR Code

경화제 종류에 따른 TGDDM 에폭시 기반 우주환경용 탄소섬유 복합재료의 제조 및 특성 평가

Manufacturing and Characterization of TGDDM Epoxy-based Carbon Fiber Composites for Space Applications According to Curing Agent Types

  • 투고 : 2024.05.27
  • 심사 : 2024.06.20
  • 발행 : 2024.06.30

초록

In this study, the characteristics of TGDDM (N,N,N',N'-tetraglycidyl-4,4'-diaminediphenylmethane) based epoxy resin for space applications were analyzed, and carbon/epoxy composites were fabricated using this resin as the matrix. M-MIPA (4,4'-methylenebis(2-isopropyl-6-methylaniline)) and M-DEA (4,4'-methylenebis(2,6-diethylaniline)) were used as base curing agents. Additionally, 3,3'-DDS (diaminodiphenyl sulfone) and 4,4'-DDS were respectively added to formulate the two types of epoxy matrices. The addition of 4,4'-DDS led to a lower initiation temperature and increased heat of reaction compared to 3,3'-DDS. However, the maximum exothermic temperature and activation energy showed no significant difference. Moreover, the addition of 4,4'-DDS increased the glass transition temperature, crosslink density, tensile strength, and strain at break of the epoxy. The thermal decomposition behavior of the cured epoxy indicated that with the addition of 4,4'-DDS, the activation energy was higher in the early stages of decomposition compared to 3,3'-DDS. However, it maintained a thermally stable region with negligible change in activation energy even as conversion increased. The flexural strength of the carbon/epoxy composites with 4,4'-DDS was 8.15% higher than that of the composites with 3,3'-DDS.

키워드

과제정보

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다(과제번호 22-CM-19).

참고문헌

  1. A. Sayam, A. M. Rahman, M. S. Rahman, S. A. Smriti, F. Ahmed, M. F. Rabbi, and M. O. Faruque, "A Review on Carbon Fiber-reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges", Carbon Lett., 2022, 32, 1173-1205.  https://doi.org/10.1007/s42823-022-00358-2
  2. N. V. Nayak, "Composite Materials in Aerospace Applications", Int. J. Sci. Res. Publ., 2014, 4, 1-10. 
  3. G. Barra, L. Guadagno, M. Raimondo, M. G. Santonicola, E. Toto, and S. V. Ciprioti, "A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications", Polymers, 2023, 15, 3786. 
  4. J. W. Yu, J. Jung, Y. Choi, J. H. Choi, J. Yu, J. K. Lee, N. You, and M. Goh, "Enhancement of the Crosslink Density, Glass Transition Temperature, and Strength of Epoxy Resin by Using Functionalized Graphene Oxide Co-curing Agents", Polym. Chem., 2016, 7, 36-43.  https://doi.org/10.1039/C5PY01483B
  5. M. Lee, W. Kwon, and E. Jeong, "Effect of Stereoisomeric Structures of Curing Agents on Curing Behaviors, Thermal and Mechanical Properties of Epoxy Resins", Text. Color. Finish., 2018, 30, 180-189. 
  6. M. B. Whittaker and J. P. Foreman, "Identifying the Influences on Network Formation in Structural Isomers of Multifunctional Epoxies Using Near-infrared Spectroscopy", Macromolecules, 2024, 57, 3438-3450. 
  7. A. C. Grillet, J. Galy, J. F. Gerard, and J. P. Pascault, "Mechanical and Viscoelastic Properties of Epoxy Networks Cured with Aromatic Diamines", Polymer, 1991, 32, 1885-1891.  https://doi.org/10.1016/0032-3861(91)90380-2
  8. C. H. Lee and K. M. Kim, "A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects", J. Adhes. Interfac., 2009, 10, 117-126. 
  9. M. J. Lee, M. H. Jeon, J. W. Jeong, Y. R. Lee, and S. G. Lee, "Curing Behavior and Mechanical Properties of DGEBA/Phenol Novolac Hybrid Epoxy Resin according to Curing Accelerator Content", Text. Sci. Eng., 2020, 57, 177-185. 
  10. I. Cruz-Cruz, C. A. Ramirez-Herrera, O. Martinez-Romero, S. A. Castillo-Marquez, I. H. Jimenez-Cedeno, D. Olvera-Trejo, and A. Elias-Zuniga, "Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites", Polymers, 2022, 14, 1100. 
  11. H. W. He, F. Gao, and K. X. Li, "Effect of Epoxy Resin Properties on the Mechanical Properties of Carbon Fiber/Epoxy Resin Composites", Int. J. Mater. Res., 2013, 104, 899-902.  https://doi.org/10.3139/146.110937
  12. J. E. Lee, "A Study on Curing and Thermal Decomposition Properties of Epoxy Composites with Silica Nanoparticles", Text. Sci. Eng., 2023, 60, 81-89. 
  13. R. Hardis, J. Jessop, F. E. Peters, and M. R. Kessler, "Cure Kinetics Characterization and Monitoring of an Epoxy Resin using DSC, Raman Spectroscopy, and DEA", Compos. - A: Appl. Sci. Manuf., 2013, 49, 100-108.  https://doi.org/10.1016/j.compositesa.2013.01.021
  14. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem., 1957, 29, 1702-1706.  https://doi.org/10.1021/ac60131a045
  15. T. Ozawa, "Kinetic Analysis of Derivative Curves in Thermal Analysis", J. Therm. Anal., 2, 301-324. 
  16. S. S. Devangamath, B. Lobo, S. P. Masti, and S. Narasagoudr, "Mechanical and Dynamic Mechanical Studies on Epoxy-cobaltous Sulfate Polymer Hybrids", Fiber. Polym., 2018, 19, 1490-1499.  https://doi.org/10.1007/s12221-018-8031-4
  17. K. J. Laidler, "Symbolism and Terminology in Chemical Kinetics", Pure Appl. Chem., 1981, 53, 753-771.  https://doi.org/10.1351/pac198153030753
  18. H. L. Friedman, "Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry. Application to a Phenolic Plastic", J. Polym. Sci. - C: Polym. Symp., 1964, 6, 183-195.  https://doi.org/10.1002/polc.5070060121
  19. J. H. Flynn and L. A. Wall, "General Treatment of the Thermogravimetry of Polymers", J. Res. Natl. Bur. Stand. - A: Phys. Chem., 1966, 70, 487-523.  https://doi.org/10.6028/jres.070A.043
  20. S. S. Choi, J. H. Lee, and S. H. Lee, "Thermal Properties of Lyocell Fibers by Activation Energy and Pretreatment during Oxidation", Polymer(Korea), 2019, 43, 872-878.  https://doi.org/10.7317/pk.2019.43.6.872
  21. N. M. Ainali, E. Tarani, A. Zamboulis, K. P. Cresnar, L. F. Zemljic, K. Chrissafis, and D. N. Bikiaris, "Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin", Polymers, 2021, 13, 2818. 
  22. J. S. Oh, J. M. Lee, and W. S. Ahn, "Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites", Polymer(Korea), 2009, 33, 435-440. 
  23. T. Ozawa, "A New Method of Analyzing Thermogravimetric Data", Bull. Chem. Soc. Jpn., 1965, 38, 1881-1886.  https://doi.org/10.1246/bcsj.38.1881
  24. D. Kwon, M. Lee, W. Kwon, E. Lee, and E. Jeong, "Influence of Stereoisomerism of Epoxy Hardeners on Fracture Toughness of Carbon Fiber/Epoxy Composites", Carbon Lett., 29, 2019, 449-453.  https://doi.org/10.1007/s42823-019-00060-w
  25. A. A. Jaber, S. A. Abbas, A. A. Farah, K. K. Kopec, Y. M. Alsalik, M. A. Tayeb, and N. Verghese, "Effect of Fiber Sizing Levels on the Mechanical Properties of Carbon Fiber-reinforced Thermoset Composites", Polymers, 2023, 15, 4678. 
  26. P. Han, L. Yang, S. Zhang, and Z. Gu, "Constructing a Superior Interfacial Microstructure on Carbon Fiber for High Interfacial and Mechanical Properties of Epoxy Composites", Nanomater, 2022, 12, 2778.