DOI QR코드

DOI QR Code

초고온 흑연화 처리 및 전구체 섬유 방사 연신비에 따른 PAN계 탄소섬유의 특성 분석

Characterization of PAN-based Carbon Fibers Based on Ultra-high Termperature Graphitization Treatment and Spinning Elongation Ratio of Precursor Fiber

  • 조현재 (전북대학교 유기소재섬유공학과) ;
  • 유승민 (전북대학교 유기소재섬유공학과) ;
  • 정동철 (전북대학교 유기소재섬유공학과) ;
  • 고태훈 (전북대학교 나노융합공학과) ;
  • 김학용 (전북대학교 유기소재섬유공학과) ;
  • 정용식 (전북대학교 유기소재섬유공학과) ;
  • 김병석 (전북대학교 유기소재섬유공학과)
  • Hyun-Jae Cho (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Seungmin Yu (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Dong-Chul Chung (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Tae-Hoon Ko (Department of Nano Convergence Engineering, Jeonbuk National University) ;
  • Hak-Yong Kim (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Yong-Sik Chung (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Byoung-Suhk Kim (Department of Organic Materials and Textile Engineering, Jeonbuk National University)
  • 투고 : 2024.05.16
  • 심사 : 2024.05.24
  • 발행 : 2024.06.30

초록

In this study, the effects of ultra-high temperature graphitization and spinning elongation ratio were studied on the crystalline structure and mechanical properties of the PANbased carbon fibers. Three types of PAN (polyacrylonitrile)-based carbon fibers from Toray (T300, M40, and M46) were subjected to ultra-high temperature treatment at 2,800 ℃, and then the crystal structure and strength/modulus of the graphitized carbon fibers (graphite fibers) were analyzed. Crystal size and orientation factor were investigated using 2D X-ray Diffraction. Single-fiber tensile tests were conducted using a linear Density and Tensile Tester (FAVIMAT+) to measure mechanical properties (strength and modulus). In addition, the synthesized PAN copolymer was dissolved in a DMSO solvent to prepare a spinning dope (~23%), and PAN precursor fibers were prepared under different elongation ratio through wet spinning. The result confirmed that the crystalline size (Lc) was increased by ultra-high temperature treatment and higher spinning elongation ratio and also thus mechanical properties was improved.

키워드

과제정보

이 논문은 2022년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(No. KRIT-CT-22-025, 초고탄성 탄소섬유 특화연구실).

참고문헌

  1. P. Morgan, "Carbon Fibers and Their Composites", CRC Press, Taylor & Francis Group, Boca Raton, 2005.
  2. H. J. Lee, J. S. Won, S. C. Lim, T. S. Lee, J. Y. Yoon, and S. G. Lee, "Preparation and Characterization of PAN-based Carbon Fiber with Carbonization Temperature", Text. Sci. Eng., 2016, 53, 103-108. https://doi.org/10.12772/TSE.2016.53.103
  3. B. A. Newcomb, "Processing, Structure, and Properties of Carbon Fibers", Compos.: Part A, 2016, 91, 262-282. https://doi.org/10.1016/j.compositesa.2016.10.018
  4. J. Kaur, K. Millington, and S. Smith, "Producing High-quality Precursor Polymer and Fibers to Achieve Theoretical Strength in Carbon Fibers: A Review", J. Appl. Polym. Sci., 2016, 133, 43963.
  5. J. Zhang, G. Lin, U. Vaidya, and H. Wang, "Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications", Compos. Part B: Eng., 2023, 250, 11046.
  6. S. S. Yao, F. L. Jin, K. Y. Rhee, D. Hui, and S. J. Park, "Recent Advances in Carbon-fiber-reinforced Thermoplastic Composites: A Review", Compos. Part B, 2018, 142, 241-250. https://doi.org/10.1016/j.compositesb.2017.12.007
  7. T. Kobashi and S. Takao, "Polyacrylonitrile Fiber with High Strength and High Modulus of Elasticity", US Patent, 4,658,004 (1987).
  8. D. Li, H. Wang, and X. Wang, "Effect of Microstructure on the Modulus of PAN-based Carbon Fibers during High Temperature Treatment and Hot Stretching Graphitization", J. Mater. Sci., 2007, 42, 4642-4649. https://doi.org/10.1007/s10853-006-0519-4
  9. S. Yamane, T. Higuchi, and K. Yamasaka, "Process for Producing High-strength, High-Modulus Carbon Fibers", US Patent, 4,917,836 (1990).
  10. M. Kobayashi, M. Ozaki, and Y. Matsuhisa, "Carbon Fibers and Process for the Production Thereof ", US Patent, 6,368,712 (2002).
  11. M. K. Seo and S. J. Park, "Manufacturing Method of Carbon Fibers and Their Application Fields", Polym. Sci. Technol., 2010, 21, 130-140.
  12. J. Lu, W. Li, H. Kang, L. Feng, J. Xu, and R. Liu, "Microstructure and Properties of Polyacrylonitrile Based Carbon Fibers", Polym. Test., 2020, 81, 106267.
  13. K. Shirasu, K. Goto, and K. Naito, "Microstructure-elastic Property Relationships in Carbon Fibers: A Nanoindentation Study", Compos. Part B, 2020, 200, 108342.
  14. D. Jang, H. Joh, B. C. Ku, S. Kim, Y. Bang, and S. Lee, "Effect of Heating Rate in Carbonization on Mechanical Properties of Polyacrylonitrile Based Carbon Fibers", Polymer(Korea), 2017, 41, 196-202. https://doi.org/10.7317/pk.2017.41.2.196
  15. J. Y. Yang, B. M. Lee, Y. S. Kuk, B. S. Kim, and M. K. Seo, "Study on Rehological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures", Compos. Res., 2019, 32, 71-77.
  16. H. G. Chae, B. A. Newcomb, P. V. Gulgunje, Y. Liu, K. M. Lyons, S. Gjoshal, C. Pranmanik, L. Giannuzzi, K. Sahin, I. Chasiotis, and S. Kumar, "High Strength and High Modulus Carbon Fibers", Carbon, 2015, 93, 81-87. https://doi.org/10.1016/j.carbon.2015.05.016
  17. K. H. Choi, S. J. Heo, S. H. Hwang, S. B. Bae, H. I. Lee, and H. G. Chae, "The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN based Carbon Fiber", Compos. Res., 2018, 31, 385-391.
  18. N. V. Salim, S. Blight, C. Creighton, S. Nunna, S. Atkiss, and J. M. Razal, "The Role of Tension and Temperature for Efficient Carbonizaion of Polyacrylonitrile Fibers: Toward Low Cost Carbon Fibers", Ind. Eng. Chem. Res., 2018, 57, 4268-4276. https://doi.org/10.1021/acs.iecr.7b05336
  19. D. Lei, K. Devarayan, X. Li, W. K. Choi, M. K. Seo, and B. S. Kim, "Effects of Comonomer with Carboxylic Group on Stabilization of High Molecular Weight Polyacrylonitrile Nanofibrous Copolymers", Carbon Lett., 2014, 15, 290-294. https://doi.org/10.5714/CL.2014.15.4.290
  20. H. Ju, M. Han, K. Song, C. Jeon, H. Jeong, M. J. Kim, and H. G. Chae, "Polyacrylonitrile Based Copolymer Synthesis and Precursor Fiber Spinning for Manufacturing High-performance Carbon Fiber", Compos. Res., 2022, 35, 115-119.
  21. J. S. Park, H. J. Cho, and Y. S. Chung, "Preparation and Characteristics of Polyimide Based Activated Carbon Fibers", Text. Sci. Eng., 2024, 61, 33-40.
  22. M. Ise, K. Hayashida, and M. Endo, "Carbon Fiber and Method for Producing Polyacrylonitrile-based Precursor Fiber for Producing Carbon Fiber", JP Patent, JP2008308777A (2008).
  23. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, "Assessing the Structural Properties of Graphitic and Non-graphitic Carbons by Raman Spectroscopy", Carbon, 2020, 161, 359.
  24. S. H. Lee, S. M. Oh, S. M. Lee, and J. S. Roh, "Analysis of Microstructural Changes in Polyacrylonitrile-Based Carbon Fibers Caused by Isothermal Oxidation in Air", Text. Sci. Eng., 2021, 58, 31-39.
  25. H. Ahn, J. H. Wee, Y. M. Kim, W. R. Yu, and S. Y. Yeo, "Microstructure and Mechanical Properties of Polyacrylonitrile Precursor Fiber with Dry and Wet Drawing Process", Polymers, 2021, 13, 1613.
  26. Y. Wang, Y. Tong, B. Zhang, H. Su, and L. Xu, "Formation of Surface Morphology in Polyacrylonitrile(PAN) Fibers during Wet-Spinning", J. Eng. Fibers and Fabrics, 2018, 13, 52-47.
  27. Y. Zhou, Y. Sha, W. Liu, T. Gao, Z. Yao, Y. Zhang, and W. Cao, "Hierarchical Radial Structure of Polyacrylonitrile Precursor Formed during the Wet-spinning Process", RSC Adv., 2019, 9, 17051.