DOI QR코드

DOI QR Code

Multi-mode switching and charging area division of multi-transmitter IPT system

  • Da Li (School of Electrical Engineering, Naval University of Engineering) ;
  • Pan Sun (School of Electrical Engineering, Naval University of Engineering) ;
  • Kai Ji (School of Electrical Engineering, Naval University of Engineering) ;
  • Yan Liang (School of Electrical Engineering, Naval University of Engineering) ;
  • Yilin Liu (School of Electrical Engineering, Naval University of Engineering) ;
  • Xusheng Wu (School of Electrical Engineering, Naval University of Engineering)
  • Received : 2024.01.08
  • Accepted : 2024.05.21
  • Published : 2024.07.20

Abstract

How to improve the efficiency of IPT systems in the case of transceiver coil misalignment is a core problem that needs to be solved urgently. Compared with single-transmitter IPT systems, multi-transmitter ones exhibit greater power supply flexibility, which ensures stable operation despite misalignment. A topology of a multi-transmitter IPT system is proposed in this study. A grouping and switching control strategy of 3 × 3 multi-transmitter coils is designed on the basis of reconfigurable inverter. A method for charging area division is also put forward to improve the efficiency of the IPT system under the condition of power priority. Compared with the traditional multi-transmitter IPT system, the new multi-transmitter topology proposed in this study can realize the independent operation of each transmitter coil with the minimum number of passive devices.

Keywords

Acknowledgement

This article is funded by National Natural Science Foundation of China, 52007195, Pan Sun.

References

  1. Hou, X., Su, J., Hu, H., et al.: A multi-relay magnetic coupling wireless power transfer system with hybrid output characteristics. IEEE J. Emerg. Select. Topics Power Electron. 11(6), 6150-6158 (2023) https://doi.org/10.1109/JESTPE.2023.3326968
  2. Rong, E., Sun, P., Qiao, K., et al.: Six-plate and hybrid-dielectric capacitive coupler for underwater wireless power transfer. IEEE Trans. Power Electron. 39(2), 2867-2881 (2023) https://doi.org/10.1109/TPEL.2023.3334888
  3. Zhang, Y., Liu, C., Zhou, M., et al.: A novel asymmetrical quadrupolar coil for interoperability of unipolar, bipolar, and quadrupolar coils in electric vehicle wireless charging systems. IEEE Trans. Ind. Electron. 71(4), 4300-4303 (2023) https://doi.org/10.1109/TIE.2023.3277123
  4. Chen, W., Lin, F., Covic, G.A.: A modified DDQ track for interoperable EV dynamic charging. IEEE Trans. Power Electron. (2023). https://doi.org/10.1109/TPEL.2023.3267729
  5. Deng, J., Mao, Q., Wang, W., et al.: Frequency and parameter combined tuning method of LCC-LCC compensated resonant converter with wide coupling variation for EV wireless charger. IEEE J. Emerg. Select. Topics Power Electron. 10(1), 956-968 (2021) https://doi.org/10.1109/JESTPE.2021.3077459
  6. Chung, E., Ha, J.I.: Impedance matching network design for 6.78 MHz wireless power transfer system with constant power characteristics against misalignment. IEEE Trans. Power Electron. 39(1), 1788-1801 (2023) https://doi.org/10.1109/TPEL.2023.3320199
  7. Yao, Y., Zhong, W.: General model and analysis of misalignment characteristics of fixed-frequency WPT systems. IEEE Trans. Power Electron. 38(11), 13315-13328 (2023) https://doi.org/10.1109/TPEL.2023.3301655
  8. Ning, G., Zhou, K., Liang, J., et al.: Reconfigurable and modular wireless charger based on dual-band design. IEEE Trans. Circuits Syst. II Express Briefs 70(9), 3524-3528 (2023)
  9. Kallel, B., Kanoun, O., Trabelsi, H.: Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors. IET Power Electron. 9(8), 1768-1774 (2016) https://doi.org/10.1049/iet-pel.2015.0800
  10. Feng, H., Cai, T., Duan, S., et al.: An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans. Industr. Electron. 63(10), 6591-6601 (2016) https://doi.org/10.1109/TIE.2016.2589922
  11. Mou, X., Groling, O., Sun, H.: Energy-efficient and adaptive design for wireless power transfer in electric vehicles. IEEE Trans. Industr. Electron. 64(9), 7250-7260 (2017) https://doi.org/10.1109/TIE.2017.2686299
  12. Huh, S., Park, B., Choi, S., et al.: Transmitter coils selection method for wireless power transfer system with multiple transmitter coils and single receiver coil. IEEE Trans. Power Electron. 38(3), 4092-4109 (2022)
  13. Sarnago, H., Burdio, J.M., Lucia, O.: High-performance and cost-effective ZCS matrix resonant inverter for total active surface induction heating appliances. IEEE Trans. Power Electron. 34(1), 117-125 (2018) https://doi.org/10.1109/TPEL.2018.2815902
  14. Jow, U.M., Giovanola, M.: Geometrical design of a scalable overlap planar spiral coil array to generate a homogeneous magnetic field. IEEE Trans. Magn. 49(6), 2933-2945 (2012) https://doi.org/10.1109/TMAG.2012.2235181
  15. Tan, P., Peng, T., Gao, X., et al.: Flexible combination and switching control for robust wireless power transfer system with hexagonal array coil. IEEE Trans. Power Electron. 36(4), 3868-3882 (2020)
  16. Zhang, H., Shao, Y., Kang, N., et al.: A vertically modularized reconfigurable wireless power transfer system: architecture, modeling, and design. IEEE Trans. Power Electron. 38(2), 2730-2742 (2022) https://doi.org/10.1109/TPEL.2022.3208315
  17. Wang, L., Sun, P., Liang, Y., et al.: Joint real-time identification for mutual inductance and load charging parameters of IPT system. IEEE J. Emerg. Select. Topics Power Electron. 11(4), 4574-4590 (2023) https://doi.org/10.1109/JESTPE.2023.3275138