DOI QR코드

DOI QR Code

Integrated bus voltage control method for DC microgrids based on adaptive virtual inertia control

  • Liangtao Weng (School of Automation, Guangdong University of Technology) ;
  • Ling Yang (School of Automation, Guangdong University of Technology) ;
  • Zongyu Lei (School of Automation, Guangdong University of Technology) ;
  • Zehang Huang (School of Automation, Guangdong University of Technology) ;
  • Yongqiao Chen (School of Automation, Guangdong University of Technology)
  • Received : 2023.03.25
  • Accepted : 2024.02.21
  • Published : 2024.07.20

Abstract

Conventional droop control is mainly used for DC microgrids. As a result, DC bus voltage suffers from rapid changes, oscillations, large excursions during load disturbances, and fluctuations in renewable energy output. These issues can greatly affect voltage-sensitive loads. This study proposes an integrated control method for the bus voltage of the DC microgrid to solve the abovementioned problems. This system mainly includes an improved adaptive virtual inertia control (IAVIC), an oscillation suppressor, and a voltage compensator. In particular, the IAVIC adaptively adjusts the virtual inertia coefficient according to the voltage change rate during load disturbance, which enhances system inertia to slow bus voltage changes and improves system dynamic characteristics. On this basis, the oscillation suppressor significantly reduces voltage oscillation by eliminating the high-frequency oscillation component of the bus voltage. In this way, the oscillation component of the voltage can be prevented from entering the control link to cause the next oscillation of the voltage. In addition, the voltage compensator enables deviation-free regulation of the bus voltage, which solves the problem of severe bus voltage dips when the load power increases. The proposed integrated control method achieves optimization of the dynamic characteristics of the DC bus voltage, oscillation suppression, and deviation-free regulation. The validity of the proposed method is experimentally verified.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant No. 52107185, and in part by the Natural Science Foundation of Guangdong Province under Grant No. 2023A1515010061.

References

  1. Liu, W., Cui, X., Zhou, J., et al.: Composite passivity-based control of DC/DC boost converters with constant power loads in DC Microgrids. J. Power Electron. 22(11), 1927-1937 (2022)
  2. Xian, Q., Wang, Y., Wang, F., et al.: Hybrid passivity-based control for stability and robustness enhancement in DC microgrids with constant power loads. J. Power Electron. 23(2), 296-307 (2023)
  3. Neto, P.J.S., Barros, T.A.S., Silveira, J.P.C., et al.: Power management strategy based on virtual inertia for DC microgrids. IEEE Trans. Power Electron. 35(11), 12472-12485 (2020)
  4. Chen, F., Burgos, R., Boroyevich, D., et al.: A nonlinear droop method to improve voltage regulation and load sharing in DC systems. In: 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, pp. 45-50 (2015)
  5. Jeung, Y.-C., Le, D.D., Lee, D.-C.: Analysis and design of DCBus voltage controller of energy storage systems in DC microgrids. IEEE Access 7, 126696-126708 (2019)
  6. Gu, Y., Li, W., He, X.: Frequency-coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Trans. Power Electron. 30(4), 2328-2337 (2015)
  7. Han, Y., Pu, Y., Li, Q., et al.: Coordinated power control with virtual inertia for fuel cell-based DC microgrids cluster. Int. J. Hydrogen Energy 44(46), 25207-25220 (2019)
  8. Wu, W., Chen, Y., Luo, A., et al.: A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines. IEEE Trans. Ind. Electron. 64(7), 6005-6016 (2017)
  9. Hosseinipour, A., Hojabri, H.: Virtual inertia control of PV systems for dynamic performance and damping enhancement of DC microgrids with constant power loads. IET Renew. Power Gener. 12(4), 430-438 (2018)
  10. Fang, J., Li, H., Tang, Y., et al.: Distributed power system virtual inertia implemented by grid-connected power converters. IEEE Trans. Power Electron. 33(10), 8488-8499 (2018)
  11. Fang, J., Li, X., Tang, Y.: Grid-connected power converters with distributed virtual power system inertia. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, pp. 4267-4273 (2017)
  12. Zhu, X., Xie, Z., Jing, S., et al.: Distributed virtual inertia control and stability analysis of dc microgrid. IET Gener. Transm. Distrib. 12(14), 3477-3486 (2018)
  13. Guo, Y., Ma, W., Meng, J., et al.: A virtual inertia control strategy for dual active bridge DC-DC converter. In: 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, pp. 1-5 (2018)
  14. Meng, J., Zhang, Y., Wang, Y., et al.: Flexible virtual capacitance control strategy for a DC microgrid with multiple constraints. IET Renew. Power Gener. 14(17), 3469-3478 (2020)
  15. Ren, J., Qin, G., Huang, P., et al.: An adaptive virtual inertia control strategy on voltage regulation of DC microgrid. In: 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, pp. 2848-2853 (2021)
  16. Liang, Y., Zhang, H., Du, M., et al.: Parallel coordination control of multi-port DC-DC converter for stand-alone photovoltaic-energy storage systems. CPSS Trans. Power Electron. Appl. 5(3), 235-241 (2020)
  17. Zhang, L., Wang, X., Zhang, Z., et al.: An adaptative control strategy for interfacing converter of hybrid microgrid based on improved virtual synchronous generator. IET Renew. Power Gener. 16(2), 261-273 (2022)
  18. Wang, T., Li, H., Wang, T., et al.: Virtual inertia adaptive control strategy of ESU in DC microgrid. Energies 15(17), 6112 (2022)
  19. Wang, Y., Wang, C., Xu, L., et al.: Adjustable inertial response from the converter with adaptive droop control in DC grids. IEEE Trans. Smart Grid 10(3), 3198-3209 (2019)
  20. Li, Y., He, L., Liu, F., et al.: Flexible voltage control strategy considering distributed energy storages for DC distribution network. IEEE Trans. Smart Grid 10(1), 163-172 (2019)
  21. Nakka, P.C., Mishra, M.K.: Droop characteristics based damping and inertia emulation of DC link in a hybrid microgrid. IET Renew. Power Gener. 14(6), 1044-1052 (2020)
  22. Lin, G., Liu, J., Rehtanz, C., et al.: Inertia droop control and stability mechanism analysis of energy storage systems for DCbusbar electric vehicle charging station. IEEE Trans. Transport. Electrif. 9(1), 266-282 (2023)
  23. Swaminathan, G.V., Periasamy, S., Lu, D.D.-C.: Capacitor current control based virtual inertia control of autonomous DC microgrid. IEEE Trans. Ind. Electron. 70(7), 6908-6918 (2023)
  24. Long, B., Zeng, W., Rodriguez, J., et al.: Stability enhancement of battery-testing DC microgrid: an ADRC-based virtual inertia control approach. IEEE Trans. Smart Grid 13(6), 4256-4268 (2022)
  25. Lu, S., Yu, T., Liu, H., et al.: Research on flexible virtual inertia control method based on the small signal model of DC microgrid. Energies 15(22), 8360 (2022)
  26. Yang, H., Li, T., Long, Y., et al.: Distributed virtual inertia implementation of multiple electric springs based on model predictive control in DC microgrids. IEEE Trans. Ind. Electron. 69(12), 13439-13450 (2022)
  27. Lyu, L., Wang, X., Zhang, L., et al.: Fuzzy control based virtual synchronous generator for self-adaptative control in hybrid microgrid. Energy Rep. 8, 12092-12104 (2022)
  28. Wang, H., Zhao, S., Meng, J., et al.: Entropy weight and grey relational analysis based virtual capacitance collaborative control for multiple energy storage units. IET Power Electron. 16(3), 375-387 (2023)
  29. Long, B., Zeng, W., Rodriguez, J., et al.: Voltage regulation enhancement of DC-MG based on power accumulator battery test system: MPC-controlled virtual inertia approach. IEEE Trans. Smart Grid 13(1), 71-81 (2022)
  30. Lorzadeh, O., Lorzadeh, I., Soltani, Mohsen. N., et al.: A novel active stabilizer method for DC/DC power converter systems feeding constant power loads. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, pp. 2497-2502 (2019)
  31. V. S., R., Sasidharan, N., Mathew, A. T.: Parameter independent, simple backstepping controller for PV interface boost converter in DC microgrids with CPL. In: 2021 9th International Conference on Smart Grid (icSmartGrid), Setubal, pp. 158-162 (2021)
  32. Setiawan, M.A., Abu-Siada, A., Shahnia, F.: A new technique for simultaneous load current sharing and voltage regulation in DC microgrids. IEEE Trans. Ind. Inform. 14(4), 1403-1414 (2018)
  33. Han, R., Meng, L., Guerrero, J.M., et al.: Distributed nonlinear control with event-triggered communication to achieve currentsharing and voltage regulation in DC microgrids. IEEE Trans. Power Electron. 33(7), 6416-6433 (2018)
  34. Feng, X., Ye, Z., Xing, K, et al.: Individual load impedance specification for a stable DC distributed power system. In: APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), vol. 2, pp. 923-929 (1999)
  35. Mohammed, N., Callegaro, L., Ciobotaru, M., et al.: Accurate power sharing for islanded DC microgrids considering mismatched feeder resistances. Appl. Energy 340, 121060 (2023)
  36. Liu, X.-K., Cai, J., Xing, L., et al.: Distributed event-triggered current sharing control for islanded DC microgrids with quantized state. IEEE Trans. Sustain. Energy 1-10 (2023)
  37. Sharma, S., Iyer, V. M., Bhattacharya, S., et al.: Droop based distributed secondary control method with reduced communication complexity for radial DC microgrids. IEEE J. Emerg. Sel. Top. Ind. Electron. 1-12 (2023)
  38. Guo, F., Wang, L., Wen, C., et al.: Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication. IEEE Trans. Ind. Electron. 67(4), 3043-3053 (2020)
  39. Lu, X., Guerrero, J.M., Sun, K., et al.: An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron. 29(4), 1800-1812 (2013)