DOI QR코드

DOI QR Code

A STUDY ON MILNE-TYPE INEQUALITIES FOR A SPECIFIC FRACTIONAL INTEGRAL OPERATOR WITH APPLICATIONS

  • Arslan Munir (Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus) ;
  • Ather Qayyum (Institute of Mathematical Sciences, Universiti Malaya Malaysia, QFBA-Northumbria University) ;
  • Laxmi Rathour (Department of Mathematics,National Institute of Technology) ;
  • Gulnaz Atta (Department of Mathematics, University of Education DGK Campus) ;
  • Siti Suzlin Supadi (Institute of Mathematical Sciences, Universiti Malaya) ;
  • Usman Ali (Department of Mathematics, institute of Southern Punjab)
  • 투고 : 2024.02.10
  • 심사 : 2024.04.23
  • 발행 : 2024.06.30

초록

Fractional integral operators have been studied extensively in the last few decades by various mathematicians, because it plays a vital role in the developments of new inequalities. The main goal of the current study is to establish some new Milne-type inequalities by using the special type of fractional integral operator i.e Caputo Fabrizio operator. Additionally, generalization of these developed Milne-type inequalities for s-convex function are also given. Furthermore, applications to some special means, quadrature formula, and q-digamma functions are presented.

키워드

참고문헌

  1. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231. https://doi.org/10.1016/j.cnsns.2018.04.019
  2. V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002) 803-806. https://doi.org/10.1115/1.1478062
  3. M. A. El-Shaed, Fractional calculus model of the semilunar heart valve vibrations, International design engineering technical conferences and computers and information in engineering conference., (2003).
  4. M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36 (2013) 5-15.
  5. S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujev. J. Math., 23 (2001), 25-36.
  6. M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54 (2011), 2175-2182. https://doi.org/10.1016/j.mcm.2011.05.026
  7. M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ., Ser. Math. Inform. 29 (4) (2014), 371-384.
  8. U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (5) (2004), 137-146. https://doi.org/10.1016/S0096-3003(02)00657-4
  9. S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujev. J. Math., 22, 13 (2000) 19. http://eudml.org/doc/253402
  10. M. Z. Sarikaya, A. Saglam, H. Yaldiz, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. open probl. comput. sci. math. 5 (3) (2012). https://doi.org/10.48550/arXiv.1005.0451
  11. S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. inequal. appl. 5 (2000), 533-579.
  12. M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. math. appl. 60 (8) (2000), 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033
  13. T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. math. comput. 293 (2017), 358-369. https://doi.org/10.1016/j.amc.2016.08.045
  14. S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. math., 30 (1) (1999), 53-58. https://doi.org/10.5556/j.tkjm.30.1999.4207
  15. H. Yang, S. Qaisar, A. Munir, and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, Aims Mathe, 8 (8) (2023), 19391-19412. https://doi.org/10.3934/math.2023989
  16. N. A. Alqahtani., S. Qaisar, A. Munir, M. Naeem, & H. Budak, Error bounds for fractional integral inequalities with applications, Fractal and Fractional 8 (4), 208, (2024). https://doi.org/10.3390/fractalfract8040208
  17. M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, & S. S. A. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics 12 (3) (2024), 478. https://doi.org/10.3390/math12030478
  18. S. K. Paul, L. N. Mishra, V. N. Mishra., & D. Baleanu, Analysis of mixed type nonlinear Volterra-Fredholm integral equations involving the Erdelyi-Kober fractional operator, Journal of king saud university-science 35 (10), (2023), 102949. https://doi.org/10.1016/j.jksus.2023.102949
  19. V. K. Pathak, & L. N. Mishra, On solvbility and approximatting the soultions for nonlinear infinite system of frational functions integral equations in sequence space ℓp, p > 1, Journal of integral equations and applications 35 (4) (2023), 443-458.
  20. S. K. Paul, & L. N. Mishra, Stability analysis through the Bielecki metric to nonlinear fractional integral equations of n-product operators, Aims Mathe. 9 (4) (2024), 7770-7790. http://dx.doi.org/10.3934/math.2024377
  21. V. K. Pathak, & L. N. Mishra, & V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdelyi-Kober fractional operator, Mathematical methods in the applied sciences 46 (13) (2023), 14340-14352. https://doi.org/10.1002/mma.9322
  22. S. K. Paul, & L. N. Mishra, & D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Mathematics 8 (2023). https://doi.org/10.3934/math.2023891
  23. M. Raiz, R.S. Rajawat, L. N. Mishra, , V. N. Mishra, Approximation on bivariate of Durrmeyer operators based on beta function, The Journal of Analysis. (2023). https://doi.org/10.1007/s41478-023-00639-7
  24. M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of simpson's type for s-convex functions, Comput. math. appl.,60 (2010), 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033
  25. A. D. Booth. Numerical Methods, 3rd edn. Butterworths, California (1966).
  26. J. L. W. V. Jensen. Surles fonctions convexes et les inegalites entre les valeurs moyennes, Acta math. 30 (1905), 175-193. https://doi.org/10.1007/BF02418571
  27. H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111. https://doi.org/10.1007/BF01837981
  28. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).
  29. H. Budak, P. Kosem, H. Kara, On new Milne-type inequalities for fractional integrals, J inequal appl., 10(2023). https://doi.org/10.1186/s13660-023-02921-5
  30. M. Caputo, & M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in fractional differentiation & applications.1 (2) (2015), 73-85.
  31. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge unversity press, (1955).