DOI QR코드

DOI QR Code

Efficacy Assessment of the Co-Administration of Vancomycin and Metronidazole in Clostridioides difficile-Infected Mice Based on Changes in Intestinal Ecology

  • Saiwei Zhong (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University) ;
  • Jingpeng Yang (School of Food Science and Pharmaceutical Engineering, Nanjing Normal University) ;
  • He Huang (School of Food Science and Pharmaceutical Engineering, Nanjing Normal University)
  • Received : 2023.12.26
  • Accepted : 2024.02.19
  • Published : 2024.04.28

Abstract

Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 32200154).

References

  1. Shen A. 2020. Clostridioides difficile spore formation and germination: new insights and opportunities for intervention. Annu. Rev. Microbiol. 74: 545-566. https://doi.org/10.1146/annurev-micro-011320-011321
  2. Schnizlein MK, Young VB. 2022. Capturing the environment of the Clostridioides difficile infection cycle. Nat. Rev. Gastroenterol. Hepatol. 19: 508-520. https://doi.org/10.1038/s41575-022-00610-0
  3. Guh AY, Kutty PK. 2018. Clostridioides difficile infection. Ann. Intern. Med. 169: ITC49-ITC64. https://doi.org/10.7326/AITC201810020
  4. Beinortas T, Burr NE, Wilcox MH, Subramanian V. 2018. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect. Dis. 18: 1035-1044. https://doi.org/10.1016/S1473-3099(18)30285-8
  5. Zar FA, Bakkanagari SR, Moorthi KMLST, Davis MB. 2007. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile - associated diarrhea, stratified by disease severity. Clin. Infect. Dis. 45: 302-307. https://doi.org/10.1086/519265
  6. Tashiro S, Mihara T, Okawa R, Tanaka Y, Samura M, Enoki Y, et al. 2023. Optimal therapeutic recommendation for Clostridioides difficile infection in pediatric and adolescent populations: a systematic review and meta-analysis. Eur. J. Pediatr. 182: 2673-2681.
  7. Fitzpatrick F, Safdar N, van Prehn J, Tschudin-Sutter S. 2022. How can patients with Clostridioides difficile infection on concomitant antibiotic treatment be best managed? Lancet Infect. Dis. 22: e336-e340. https://doi.org/10.1016/S1473-3099(22)00274-2
  8. Wu Y, Wang YY, Bai LL, Zhang WZ, Li GW, Lu JX. 2022. A narrative review of Clostridioides difficile infection in China. Anaerobe 74: 102540.
  9. Kim J, Kim J, Kim B, Pai H. 2022. Which is the preferred regimen for non-severe Clostridioides difficile infection in Korea, vancomycin or metronidazole? Infect. Chemother. 54: 213-219. https://doi.org/10.3947/ic.2022.0027
  10. Bass SN, Bauer SR, Neuner EA, Lam SW. 2013. Comparison of treatment outcomes with vancomycin alone versus combination therapy in severe Clostridium difficile infection. J. Hosp. Infect. 85: 22-27. https://doi.org/10.1016/j.jhin.2012.12.019
  11. Fishbein SRS, Hink T, Reske KA, Cass C, Struttmann E, Iqbal ZH, et al. 2021. Randomized controlled trial of oral vancomycin treatment in Clostridioides difficile-colonized patients. mSphere 6: e00936-20.
  12. Lewis BB, Buffie CG, Carter RA, Leiner I, Toussaint NC, Miller LC, et al. 2015. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J. Infect. Dis. 212: 1656-1665. https://doi.org/10.1093/infdis/jiv256
  13. Yamaguchi T, Konishi H, Aoki K, Ishii Y, Chono K, Tateda K. 2020. The gut microbiome diversity of Clostridioides difficile-inoculated mice treated with vancomycin and fidaxomicin. J. Infect. Chemother. 26: 483-491. https://doi.org/10.1016/j.jiac.2019.12.020
  14. Bao H, Lighter J, Dubrovskaya Y, Merchan C, Siegfried J, Papadopoulos J, et al. 2021. Oral vancomycin as secondary prophylaxis for Clostridioides difficile infection. Pediatrics 148: e2020031807.
  15. Zhang K, Beckett P, Abouanaser S, Stankus V, Lee C, Smieja M. 2019. Prolonged oral vancomycin for secondary prophylaxis of relapsing Clostridium difficile infection. BMC Infect. Dis. 19: 51.
  16. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992. https://doi.org/10.1053/j.gastro.2008.09.002
  17. Erikstrup LT, Aarup M, Hagemann-Madsen R, Dagnaes-Hansen F, Kristensen B, Olsen KE, et al. 2015. Treatment of Clostridium difficile infection in mice with vancomycin alone is as effective as treatment with vancomycin and metronidazole in combination. BMJ Open Gastroenterol. 2: e000038.
  18. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2 ' s q2-feature-classifier plugin. Microbiome 6: 90.
  19. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13: 581-583. https://doi.org/10.1038/nmeth.3869
  21. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066. https://doi.org/10.1093/nar/gkf436
  22. Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26: 1641-1650. https://doi.org/10.1093/molbev/msp077
  23. Shannon CE. 1948. IEEE Xplore Abstract - A mathematical theory of communication. Bell System. Tech. J. 27: 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  24. Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 326-349. https://doi.org/10.2307/1942268
  25. Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 385.
  26. Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62: 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
  27. Segata N, Izard J, Waldron L, Gevers D. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
  28. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. 2020. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38: 685-688. https://doi.org/10.1038/s41587-020-0548-6
  29. Ng JSY, Ryan U, Trengove RD, Maker GL. 2012. Development of an untargeted metabolomics method for the analysis of human faecal samples using Cryptosporidium-infected samples. Mol. Biochem. Parasitol. 185: 145-150. https://doi.org/10.1016/j.molbiopara.2012.08.006
  30. Ponnusamy K, Choi JN, Kim J, Lee SY, Lee CH. 2011. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 60: 817-827. https://doi.org/10.1099/jmm.0.028126-0
  31. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5: 1005-1018. https://doi.org/10.1038/nprot.2010.50
  32. Liu JF, Gefen O, Zhang ZY, Liu MM, Bar-Meir M, Balaban NQ. 2022. Interaction tolerance detection test for understanding the killing efficacy of directional antibiotic combinations. mBio 13: e0000422.
  33. Sandhu BK, McBride SM. 2018. Clostridioides difficile. Trends Microbiol. 26: 1049-1050. https://doi.org/10.1016/j.tim.2018.09.004
  34. Konikoff T, Gophna U. 2016. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 24: 523-524. https://doi.org/10.1016/j.tim.2016.02.015
  35. Peng X, Ed-Dra A, Yue M. 2022. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 63: 11244-11262. https://doi.org/10.1080/10408398.2022.2087174
  36. Si J, Kang H, You HJ, Ko G. 2022. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes 14: 2078619.
  37. Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33: 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
  38. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M, et al. 2014. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 8: 1403-1417. https://doi.org/10.1038/ismej.2014.3
  39. Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR, et al. 2021. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat. Commun. 12: 462.
  40. Theriot CM, Petri WA, Jr. 2020. Role of microbiota-derived bile acids in enteric infections. Cell 181: 1452-1454. https://doi.org/10.1016/j.cell.2020.05.033
  41. Wilson KH, Silva J, Fekety FRJI, Immunity. 1981. Suppression of Clostridium difficile by normal hamster cecal flora and prevention of antibiotic-associated cecitis. Infect. Immun. 34: 626-628. https://doi.org/10.1128/iai.34.2.626-628.1981