DOI QR코드

DOI QR Code

Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism

  • Shin-Yae Choi (Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • In-Young Chung (Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Hee-Won Bae (Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • You-Hee Cho (Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University)
  • Received : 2023.12.19
  • Accepted : 2024.01.30
  • Published : 2024.04.28

Abstract

Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2022R1A2C3003943).

References

  1. Filkins LM, O'Toole GA. 2015. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 11: e1005258.
  2. Khanolkar RA, Clark ST, Wang PW, Hwang DM, Yau YC, Waters VJ, et al. 2020. Ecological succession of polymicrobial communities in the cystic fibrosis airways. mSystems 5: 10-1128.
  3. Camus L, Briaud P, Vandenesch F, Moreau K. 2021. How bacterial adaptation to cystic fibrosis environment shapes interactions between Pseudomonas aeruginosa and Staphylococcus aureus. Front. Microbiol. 12: 617784.
  4. De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. 2020. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33: 10-1128.
  5. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, et al. 2015. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197: 2252-2264.
  6. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, et al. 2017. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat. Microbiol. 2: 1-6.
  7. Mashburn LM, Jett AM, Akins DR, Whiteley M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187: 554-566.
  8. Barnabie PM, Whiteley M. 2015. Iron-mediated control of Pseudomonas aeruginosa-Staphylococcus aureus interactions in the cystic fibrosis lung. J. Bacteriol. 197: 2250-2251.
  9. McNamara PJ, Proctor RA. 2000. Staphylococcus aureus small colony variants, electron transport and persistent infections. Int. J. Antimicrob. Agents 14: 117-122.
  10. Hoffman LR, Deziel E, D'Argenio DA, Lepine F, Emerson J, McNamara S, et al. 2006. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 103: 19890-19895.
  11. D'Argenio DA, Calfee MW, Rainey PB, Pesci EC. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184: 6481-6489.
  12. D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE, et al. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64: 512-533.
  13. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, et al. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2- alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101: 1339-1344.
  14. Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, et al. 2016. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr. Biol. 26: 195-206.
  15. Michelsen CF, Christensen AMJ, Bojer MS, Hoiby N, Ingmer H, Jelsbak L. 2014. Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J. Bacteriol. 196: 3903-3911.
  16. Kim BO, Jang HJ, Chung IY, Bae HW, Kim ES, Cho YH. 2021a. Nitrate respiration promotes polymyxin B resistance in Pseudomonas aeruginosa. Antioxid. Redox Signal. 34: 442-451.
  17. Jang HJ, Chung IY, Lim C, Chung S, Kim BO, Kim ES, et al. 2019. Redirecting an anticancer to an antibacterial hit against methicillin-resistant Staphylococcus aureus. Front. Microbiol. 10: 350.
  18. Park SY, Heo YJ, Choi YS, Deziel E, Cho YH. 2005. Conserved virulence factors of Pseudomonas aeruginosa are required for killing Bacillus subtilis. J. Microbiol. 43: 443-450.
  19. Hoang C, Ferre-D'Amare AR. 2001. Cocrystal structure of a tRNA Ψ55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107: 929-939.
  20. Ahn KS, Ha U, Jia J, Wu D, Jin S. 2004. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology 150: 539-547.
  21. Kredich NM. 2008. Biosynthesis of cysteine. EcoSal Plus 3: 10-1128.
  22. Stroupe ME, Leech HK, Daniels DS, Warren MJ, Getzoff ED. 2003. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat. Struct. Mol. Biol. 10: 1064-1073.
  23. Storbeck S, Walther J, Muller J, Parmar V, Schiebel HM, Kemken D, et al. 2009. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d1 biosynthesis. FEBS J. 276: 5973-5982.
  24. Murphy MJ, Siegel LM, Tove SR, Kamin H. 1974. Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc. Natl. Acad. Sci. USA 71: 612-616.
  25. Novick RP, Jiang D. 2003. The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149: 2709-2717.
  26. Burton B, Dubnau D. 2010. Membrane-associated DNA transport machines. Cold Spring Harb. Perspect. Biol. 2: a000406.
  27. Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. 2016. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14: 93-105.
  28. Darveau RP. 2010. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8: 481-490.
  29. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110: 1059-1064.
  30. Lee YJ, Jang HJ, Chung IY, Cho YH. 2018. Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. J. Microbiol. 56: 534-541.
  31. Jenul C, Keim KC, Jens JN, Zeiler MJ, Schilcher K, Schurr MJ, et al. 2023. Pyochelin biotransformation by Staphylococcus aureus shapes bacterial competition with Pseudomonas aeruginosa in polymicrobial infections. Cell Rep. 42: 112540.
  32. Orazi G, O'Toole GA. 2017. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio 8: e00873-17.
  33. Lee YJ. 2019. Roles of the quorum-sensing circuits in interaction between Pseudomonas aeruginosa and Staphylococcus aureus. Master thesis. CHA university.
  34. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7: 745-754.
  35. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, et al. 2004. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. USA 101: 12312-12317.
  36. Kim ES, Lee JY, Park C, Ahn SJ, Bae HW, Cho YH. 2021b. cDNA-derived RNA phage assembly reveals critical residues in the maturation protein of the Pseudomonas aeruginosa leviphage PP7. J. Virol. 95: 10-1128.
  37. Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, et al. 2010. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-κB pathway. Immunology 129: 578-588.