DOI QR코드

DOI QR Code

Fisetin-Mediated Perturbations of Membrane Permeability and Intracellular pH in Candida albicans

  • Younhee Kim (Department of Korean Medicine, Semyung University)
  • Received : 2023.11.20
  • Accepted : 2023.12.29
  • Published : 2024.04.28

Abstract

The antifungal activity of fisetin against Candida albicans is explored, elucidating a mechanism centered on membrane permeabilization and ensuing disruption of pH homeostasis. The Minimum Inhibitory Concentration (MIC) of fisetin, indicative of its interaction with the fungal membrane, increases in the presence of ergosterol. Hoechst 33342 and propidium-iodide staining reveal substantial propidium-iodide accumulation in fisetin-treated C. albicans cells at their MIC, with crystal violet uptake assays confirming fisetin-induced membrane permeabilization. Leakage analysis demonstrates a significant release of DNA and proteins in fisetin-treated cells compared to controls, underscoring the antifungal effect through membrane disruption. Green fluorescence, evident in both the cytoplasm and vacuoles of fisetin-treated cells under BCECF, AM staining, stands in contrast to controls where only acidic vacuoles exhibit staining. Ratiometric pH measurements using BCECF, AM reveal a noteworthy reduction in intracellular pH in fisetin-treated cells, emphasizing its impact on pH homeostasis. DiBAC4(3) uptake assays demonstrate membrane hyperpolarization in fisetintreated cells, suggesting potential disruptions in ion flux and cellular homeostasis. These results provide comprehensive insights into the antifungal mechanisms of fisetin, positioning it as a promising therapeutic agent against Candida infections.

Keywords

Acknowledgement

This paper was supported by the Semyung University Research Grant of 2022.

References

  1. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. 2019. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect. Dis. 6 (Supple 1): S79-S94.
  2. Pfaller MA. Diekema DJ. 2010. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36: 1-53.
  3. Kristanc L, Bozic B, Jokhadar SZ, Dolenc MS, Gomiscek G. 2019. The pore-forming action of polyenes: from model membranes to living organisms. Biochim. Biophys. Acta Biomembr. 1861: 418-430.
  4. Ghannoum MA, Rice LB. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501-517.
  5. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. 1991. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)- ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266: 17707-17712.
  6. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, et al. 2000. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 44: 368-377.
  7. Polak A, Scholer HJ. 1975. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21: 113-130.
  8. Singha RA, Kumar DA, Dasgupta S. 2012. Study of the interaction between fisetin and human serum albumin: a biophysical approach. Protein Pept. Lett. 19: 604-615.
  9. Grynkiewicz G, Demchuk OM. 2019. New perspectives for fisetin. Front. Chem. 7: 697.
  10. Pamela M. 2006. A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radic. Res. 40: 1105-1111.
  11. Park HH, Lee S, Oh JM, Lee MS, Yoon KH, Park BH, et al. 2007. Anti-inflammatory activity of fisetin in human mast cells (HMC-1). Pharmacol. Res. 55: 31-37.
  12. Prasath GS, Pillai SI, Subramanian SP. 2014. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur. J. Pharmacol. 740: 248-254.
  13. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, AbuBakar S. 2011. In vitro antiviral activity of fisetin, rutin and naringenin against dengue virus type-2. J. Med. Plant Res. 5: 5534-5539.
  14. Rengarajan T, Yaacob NS. 2016. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur. J. Pharmacol. 789: 8-16.
  15. Jo WR, Park HJ. 2017. Antiallergic effect of fisetin on IgE-mediated mast cell activation in vitro and on passive cutaneous anaphylaxis (PCA). J. Nutr. Biochem. 48: 103-111.
  16. da Costa MP, Bozinis MCV, Andrade WM, Costa CR, da Silva AL, Alves de Oliveira CM, et al. 2014. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin. BMC Complement. Altern. Med. 14: 245.
  17. Salazar-Aranda R, Granados-Guzman G, Perez-Meseguer J, Gonzalez GM, Waksman de Torres N. 2015. Activity of polyphenolic compounds against Candida glabrata. Molecules 20: 17903-17912.
  18. Reis MPC, Carvalho CRC, Andrade FA, Fernandes ODFL, Arruda W, Silva MRR. 2016. Fisetin as a promising antifungal agent against Cryptocococcus neoformans species complex. J. Appl. Microbiol. 121: 373-379.
  19. Corvini PFX, Gautier H, Rondags E, Vivier H, Goergen JL, Germain P. 2000. Intracellular pH determination of pristinamycinproducing Streptomyces pristinaespiralis by image analysis. Microbiology 146: 2671-2678.
  20. Clinical and Laboratory Standards Institute. 2008. M27-A3 Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
  21. Escalante A, Gattuso M, Perez P. Zacchino S. 2008. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera hauman. J. Nat. Prod. 71: 1720-1725.
  22. Vaara M, Vaara T. 1981. Outer membrane permeability barrier disruption by polymixin in polymixin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19: 578-583.
  23. Lee HS, Kim Y. 2022. Myricetin disturbs the cell wall integrity and increases the membrane permeability of Candida albicans. J. Microbiol. Biotechnol. 32: 37-45.
  24. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  25. Lee HS, Kim Y. 2017. Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J. Microbiol. Biotechnol. 27: 395-404.
  26. Douglas LM, Konopka JB. 2014. Fungal membrane organization: the eisosome concept. Annu. Rev. Microbiol. 68: 377-393.
  27. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 6: e1000939.
  28. Li SC, Kane PM, 2009. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta Mol. Cell. Res. 1793: 650-663.
  29. Orij R, Brul S, Smits GJ. 2011. Intracellular pH is a tightly controlled signal in yeast. Biochim. Biophys. Acta Gen. Subj. 1810: 933-944.
  30. Corradini MG, Ludescher RD. 2015. Making sense of luminescence from GRAS optical probes. Curr. Res. Food Sci. 4: 25-31.
  31. Tarsio M, Zheng H, Smardon AM, Martinez-Munoz GA, Kane PM. 2011. Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis. J. Biol. Chem. 286: 28089-28096.
  32. Grant RL, Acosta D. 1997. Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev. Biol. Anim. 33: 256-260.
  33. Cammann K.1985. Ion-selective bulk membranes as models. Top Curr. Chem. 128: 219-258.
  34. Kjellerup L, Gordon S, Cohrt KO, Brown WD, Fuglsang AT, Winther AL. 2017. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane Potential. Antimicrob. Agents Chemother. 61: e00032-17.
  35. Elmore JM, Coaker G. 2011. The role of the plasma membrane H+-ATPase in plant-microbe interactions. Mol. Plant 4: 416-427.
  36. Kane PM. 2007. The long physiological reach of the yeast vacuolar H+-ATPase. J. Bioenerg. Biomembr. 39: 415-421.
  37. Mouri R, Konoki K, Matsumori N, Oishi T, Murata M. 2008. Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance. Biochemistry 47: 7807-7815.
  38. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10: 400-406.