DOI QR코드

DOI QR Code

Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery

  • Hye Seon Song (Division of Environmental Materials, Honam National Institute of Biological Resource (HNIBR)) ;
  • Yeon Bee Kim (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Joon Yong Kim (Microbiome Research Institute, LISCure Biosciences Inc.) ;
  • Seong Woon Roh (Microbiome Research Institute, LISCure Biosciences Inc.) ;
  • Tae Woong Whon (Kimchi Functionality Research Group, World Institute of Kimchi)
  • Received : 2023.11.17
  • Accepted : 2024.02.03
  • Published : 2024.04.28

Abstract

Despite considerable advancements achieved using next-generation sequencing technologies in exploring microbial diversity, several species of the gut microbiome remain unknown. In this transformative era, culturomics has risen to prominence as a pivotal approach in unveiling realms of microbial diversity that were previously deemed inaccessible. Utilizing innovative strategies to optimize growth and culture medium composition, scientists have successfully cultured hard-tocultivate microbes. This progress has fostered the discovery and understanding of elusive microbial entities, highlighting their essential role in human health and disease paradigms. In this review, we emphasize the importance of culturomics research on the gut microbiome and provide new theories and insights for expanding microbial diversity via the optimization of cultivation conditions.

Keywords

Acknowledgement

This research was supported by the World Institute of Kimchi (KE2401-1-1), the Main Research Program of the Korea Food Research Institute (E0170600-07) funded by the Ministry of Science and ICT, a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2022R1C1C1003195), and a grant from the Honam National Institute of Biological Resources (HNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (HNIBR202302117).

References

  1. Whon TW, Shin NR, Kim JY, Roh SW. 2021. Omics in gut microbiome analysis. J. Microbiol. 59: 292-297.
  2. von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, et al. 2017. The role of gut microbiota in health and disease: in vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 44: 3-12.
  3. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352: 565-569.
  4. Liu C, Du MX, Abuduaini R, Yu HY, Li DH, Wang YJ, et al. 2021. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome 9: 119.
  5. Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. 2021. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19: 225-240.
  6. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605-1615.
  7. Sankar SA, Lagier JC, Pontarotti P, Raoult D, Fournier PE. 2015. The human gut microbiome, a taxonomic conundrum. Syst. Appl. Microbiol. 38: 276-286.
  8. Liu S, Moon CD, Zheng N, Huws S, Zhao S, Wang J. 2022. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10: 76.
  9. Clarridge JE, 3rd. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862.
  10. Gaastra W, Kusters JG, van Duijkeren E, Lipman LJ. 2014. Escherichia fergusonii. Vet. Microbiol. 172: 7-12.
  11. Lukjancenko O, Wassenaar T, Ussery D. 2010. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60: 708-720.
  12. Choi JH, Yoon YM, Kim YJ, Han KH. 2023. Role of 16S rRNA analysis in identification of microorganisms in febrile urinary tract infection of infants. Indian J. Pediatr. 90: 660-664.
  13. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. 2018. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect. 21: 58-62.
  14. Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, et al. 2022. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 10: 104.
  15. Almeida OGG, De Martinis ECP. 2019. Bioinformatics tools to assess metagenomic data for applied microbiology. Appl. Microbiol. Biotechnol. 103: 69-82.
  16. Fodor AA, DeSantis TZ, Wylie KM, Badger JH, Ye Y, Hepburn T, et al. 2012. The "most wanted" taxa from the human microbiome for whole genome sequencing. PLoS One 7: e41294.
  17. Zou Y, Lin X, Xue W, Tuo L, Chen MS, Chen XH, et al. 2021. Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Sci. Rep. 11: 11340.
  18. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23: 107-113.
  19. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. 2016. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 1: 16131.
  20. Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus K, et al. 2019. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7: 28.
  21. Ousey J, Boktor JC, Mazmanian SK. 2023. Gut microbiota suppress feeding induced by palatable foods. Curr. Biol. 33: 147-157 e147.
  22. Ito T, Sekizuka T, Kishi N, Yamashita A, Kuroda M. 2019. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes 10: 77-91.
  23. Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, et al. 2016. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 8: 72.
  24. Fleming E, Pabst V, Scholar Z, Xiong R, Voigt A, Zhou W, et al. 2021. Cultivation of common bacterial species and strains from human skin, oral, and gut microbiota. BMC Microbiol. 21: 278.
  25. Srednicka P, Roszko ML, Popowski D, Kowalczyk M, Wojcicki M, Emanowicz P, et al. 2023. Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci. Rep. 13: 3026.
  26. Diakite A, Dubourg G, Dione N, Afouda P, Bellali S, Ngom, II, et al. 2020. Optimization and standardization of the culturomics technique for human microbiome exploration. Sci. Rep. 10: 9674.
  27. Alessandri G, Fontana F, Mancabelli L, Lugli GA, Tarracchini C, Argentini C, et al. 2022. Exploring species-level infant gut bacterial biodiversity by meta-analysis and formulation of an optimized cultivation medium. NPJ Biofilms Microbiomes 8: 88.
  28. Chang Y, Hou F, Pan Z, Huang Z, Han N, Bin L, et al. 2019. Optimization of culturomics strategy in human fecal samples. Front. Microbiol. 10: 2891.
  29. Weiss AS, Niedermeier LS, von Strempel A, Burrichter AG, Ring D, Meng C, et al. 2023. Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nat. Commun. 14: 4780.
  30. Reddy C, Beveridge TJ, Breznak JA, Marzluf G. 2007. Methods for general and molecular microbiology, pp. 200-214. Ed. American Society for Microbiology Press.
  31. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. 2016. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533: 543-546.
  32. Bonnet M, Lagier JC, Raoult D, Khelaifia S. 2020. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect. 34: 100622.
  33. Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. 2015. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev. 28: 208-236.
  34. Gu Y, Yan D, Wu M, Li M, Li P, Wang J, et al. 2021. Influence of the densities and nutritional components of bacterial colonies on the culture-enriched gut bacterial community structure. AMB Express 11: 78.
  35. Kajihara Y, Yoshikawa S, Cho Y, Ito T, Miyamoto H, Kodama H. 2017. Preferential isolation of Megasphaera elsdenii from pig feces. Anaerobe 48: 160-164.
  36. Li Z, Hu G, Zhu L, Sun Z, Jiang Y, Gao MJ, et al. 2021. Study of growth, metabolism, and morphology of Akkermansia muciniphila with an in vitro advanced bionic intestinal reactor. BMC Microbiol. 21: 61.
  37. Tailford LE, Crost EH, Kavanaugh D, Juge N. 2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6: 81.
  38. Martens EC, Chiang HC, Gordon JI. 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 4: 447-457.
  39. Tramontano M, Andrejev S, Pruteanu M, Klunemann M, Kuhn M, Galardini M, et al. 2018. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3: 514-522.
  40. Smith EA, Macfarlane GT. 1997. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3: 327-337.
  41. Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6: 148.
  42. Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294: 1-8.
  43. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. 2002. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52: 2141-2146.
  44. Naud S, Khelaifia S, Mbogning Fonkou MD, Dione N, Lagier JC, Raoult D. 2020. Proof of concept of culturomics use of time of care. Front. Cell. Infect. Microbiol. 10: 524769.
  45. Huang Y, Sheth RU, Zhao S, Cohen LA, Dabaghi K, Moody T, et al. 2023. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41: 1424-1433.
  46. Fenn K, Strandwitz P, Stewart EJ, Dimise E, Rubin S, Gurubacharya S, et al. 2017. Quinones are growth factors for the human gut microbiota. Microbiome 5: 161.
  47. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. 2019. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4: 396-403.
  48. Yin J, Chen X, Li X, Kang G, Wang P, Song Y, et al. 2022. A droplet-based microfluidic approach to isolating functional bacteria from gut microbiota. Front. Cell. Infect. Microbiol. 12: 920986.
  49. Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, et al. 2022. Droplet-based microfluidics in biomedical applications. Biofabrication. 14.
  50. Afrizal A, Hitch TCA, Viehof A, Treichel N, Riedel T, Abt B, et al. 2022. Anaerobic single-cell dispensing facilitates the cultivation of human gut bacteria. Environ. Microbiol. 24: 3861-3881.
  51. McCully AL, Loop Yao M, Brower KK, Fordyce PM, Spormann AM. 2023. Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes. ISME Commun. 3: 47.