DOI QR코드

DOI QR Code

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae (Food Functionality Research Division, Korea Food Research Institute) ;
  • Yu Ra Lee (Food Functionality Research Division, Korea Food Research Institute) ;
  • Young-Soo Kim (Department of Food Science and Technology, Jeonbuk National University) ;
  • Ho-Young Park (Food Functionality Research Division, Korea Food Research Institute)
  • 투고 : 2023.12.26
  • 심사 : 2024.01.23
  • 발행 : 2024.04.28

초록

Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

키워드

과제정보

This research was supported by the Main Research Program (E0210602) of the Korea Food Research Institute (KFRI) funded by the Ministry of Science and ICT.

참고문헌

  1. Kamada N, Chen GY, Inohara N, Nunez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14: 685-690. 
  2. Chu J, Feng S, Guo C, Xue B, He K, Li L. 2023. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed. Pharmacother. 164: 114985. 
  3. Lee HB, Kim YS, Park HY. 2022. Pectic polysaccharides: targeting gut microbiota in obesity and intestinal health. Carbohydr. Polym. 287: 119363. 
  4. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. 
  5. Zsalig D, Berta A, Toth V, Szabo Z, Simon K, Figler M, et al. 2023. A review of the relationship between gut microbiome and obesity. Appl. Sci. 13: 610. 
  6. Schoultz I, Keita AV. 2020. The intestinal barrier and current techniques for the assessment of gut permeability. Cells 9: 1909. 
  7. Mirsepasi-Lauridsen HC, Vrankx K, Engberg J, Friis-Moller A, Brynskov J, Nordgaard-Lassen I, et al. 2018. Disease-specific enteric microbiome dysbiosis in inflammatory bowel disease. Front. Med. 5: 304. 
  8. Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. 2021. Prevotella diversity, niches and interactions with the human host. Nat. Rev. Microbiol. 19: 585-599. 
  9. Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, et al. 2021. Diet and the microbiota-gut-brain axis: sowing the seeds of good mental health. Adv. Nutr. 12: 1239-1285. 
  10. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. 2021. High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells 10: 3164. 
  11. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. 2019. Gut microbiome: profound implications for diet and disease. Nutrients 11: 1613. 
  12. Guo S, Al-Sadi R, Said HM, Ma TY. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol. 182: 375-387. 
  13. Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, et al. 2018. Inflammatory links between high fat diets and diseases. Front. Immunol. 9: 2649. 
  14. Kim MR, Cho SY, Lee HJ, Kim JY, Nguyen UTT, Ha NM, et al. 2022. Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. Phytomedicine 103: 154209. 
  15. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. 2020. Negative effects of a high-fat diet on intestinal permeability: a review. Adv. Nutr. 11: 77-91. 
  16. Al-Sadi RM, Ma TY. 2007. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 178: 4641-4649. 
  17. Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, et al. 2003. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 285: G621-629. 
  18. Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, et al. 2005. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol. Biol. Cell 16: 5040-5052. 
  19. Rajan S, Vyas D, Clark AT, Woolsey CA, Clark JA, Hotchkiss RS, et al. 2008. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis. Shock. 29: 483-489. 
  20. Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, et al. 2015. Interleukin-23-Independent IL-17 production regulates intestinal epithelial permeability. Immunity 43: 727-738. 
  21. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, et al. 2006. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G827-838. 
  22. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131: 117-129. 
  23. Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. 2020. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochim. Biophy. Acta Biomembr. 1862: 183299. 
  24. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, et al. 2000. Human junction adhesion molecule regulates tight junction resealing in epithelia. J. Cell Sci. 113: 2363-2374. 
  25. Bian Y, Lei J, Zhong J, Wang B, Wan Y, Li J, et al. 2022. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem. 99: 108840. 
  26. Mujawdiya PK, Sharma P, Sharad S, Kapur S. 2020. Reversal of increase in intestinal permeability by Mangifera indica seed kernel extract in high-fat diet-induced obese mice. Pharmaceuticals 13: 190. 
  27. Alonso-Pena M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, et al. 2023. Innovative therapeutic approaches in non-alcoholic fatty liver disease: when knowing your patient is key. Int. J. Mol. Sci. 24: 10718. 
  28. Wang RM, Wang L, Wang SW, Wang JT, Su CY, Zhang L, et al. 2023. Phenolics from noni (Morinda citrifolia L.) fruit alleviate obesity in high fat diet-fed mice via modulating the gut microbiota and mitigating intestinal damage. Food Chem. 402: 134232. 
  29. Johnson AMF, Costanzo A, Gareau MG, Armando AM, Quehenberger O, Jameson JM, et al. 2015. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One 10: e0122195 . 
  30. Batista KS, Soares NL, Dorand VAM, Alves AF, dos Santos Lima M, de Alencar Pereira R, et al. 2023. Acerola fruit by-product alleviates lipid, glucose, and inflammatory changes in the enterohepatic axis of rats fed a high-fat diet. Food Chem. 403: 134322. 
  31. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901-911. 
  32. Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. 2012. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7: e34233. 
  33. Fan J, Sun J, Li T, Yan X, Jiang Y. 2022. Nuciferine prevents hepatic steatosis associated with improving intestinal mucosal integrity, mucus-related microbiota and inhibiting TLR4/MyD88/NF-κB pathway in high-fat induced rats. J. Funct. Foods 88: 104859. 
  34. Vezza T, Rodriguez-Nogales A, Algieri F, Garrido-Mesa J, Romero M, Sanchez M, et al. 2019. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol. Res. 150: 104487. 
  35. Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, et al. 2017. Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids 52: 499-511. 
  36. Kubeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Muller VM, Schuppel VL, et al. 2016. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab. 5: 1162-1174. 
  37. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW, Lee M-S, et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727-735. 
  38. Tomas J, Mulet C, Saffarian A, Cavin J-B, Ducroc R, Regnault B, et al. 2016. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA 113: E5934-E5943. 
  39. Shen W, Wolf PG, Carbonero F, Zhong W, Reid T, Gaskins HR, et al. 2014. Intestinal and systemic inflammatory responses are positively associated with Sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J. Nutr. 144: 1181-1187. 
  40. Cao Y, Zou S, Xu H, Li M, Tong Z, Xu M, et al. 2016. Hypoglycemic activity of the Baker's yeast β-glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol. Nutr. Food Res. 60: 2678-2690. 
  41. Menta PLR, Andrade MER, de Castro LF, Trindade LM, Dias MTS, Miyamoto JE, et al. 2022. Interesterified palm oil increases intestinal permeability, promotes bacterial translocation, alters inflammatory parameters and tight-junction protein genic expression in Swiss mice. Food Res. Int. 151: 110897. 
  42. Li SQ, Wang MQ, Li C, Meng QJ, Meng YT, Ying J, et al. 2022. Beneficial effects of partly milled highland barley on the prevention of high-fat diet-induced glycometabolic disorder and the modulation of gut microbiota in mice. Nutrients 14: 762. 
  43. Zhang Z, Lin T, Meng Y, Hu M, Shu L, Jiang H, et al. 2021. FOS/GOS attenuates high-fat diet induced bone loss via reversing microbiota dysbiosis, high intestinal permeability and systemic inflammation in mice. Metabolism 119: 154767. 
  44. Nascimento J, Matheus V, Oliveira R, Tada S, Collares-Buzato CB. 2021. High-fat diet induces disruption of the tight junction-mediated paracellular barrier in the proximal small intestine before the onset of type 2 diabetes and endotoxemia. Dig. Dis. Sci. 66: 3359-3374. 
  45. Chen TY, Chen YL, Chiu WC, Yeh CL, Tung YT, Shirakawa H, et al. 2022. Effects of the water extract of fermented rice bran on liver damage and intestinal injury in aged rats with high-fat diet feeding. Plants 11: 607. 
  46. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exper. Mol. Med. 50: e450-e450. 
  47. Anto L, Blesso CN. 2022. Interplay between diet, the gut microbiome, and atherosclerosis: role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. J. Nutr. Biochem. 105: 108991. 
  48. Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J, et al. 2017. Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. J. Nutr. 147: 770-780. 
  49. Andreasen LJ, Krog S, Ludvigsen TP, Nielsen OL, Moller JE, Christoffersen BO, et al. 2018. Dietary normalization from a fat, fructose and cholesterol-rich diet to chow limits the amount of myocardial collagen in a Gottingen Minipig model of obesity. Nutr. Metab. 15: 64. 
  50. Do MH, Lee E, Oh MJ, Kim Y, Park HY. 2018. High-glucose or-fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10: 761. 
  51. Wang T, Yan H, Lu Y, Li X, Wang X, Shan Y, et al. 2020. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation. Eur. J. Nutr. 59: 2709-2728. 
  52. Zhang X, Monnoye M, Mariadassou M, Beguet-Crespel F, Lapaque N, Heberden C, et al. 2021. Glucose but not fructose alters the intestinal paracellular permeability in association with gut inflammation and dysbiosis in mice. Front. Immunol. 12: 742584. 
  53. Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, et al. 2015. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J. Nutri. Biochem. 26: 1183-1192. 
  54. Palmnas MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. 2014. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One 9: e109841. 
  55. Zheng Z, Xiao Y, Ma L, Lyu W, Peng H, Wang X, et al. 2022. Low dose of sucralose alter gut microbiome in mice. Front. Nutr. 9: 848392. 
  56. Chi L, Bian X, Gao B, Tu P, Lai Y, Ru H, et al. 2018. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules 23: 367. 
  57. Li X, Liu Y, Wang Y, Li X, Liu X, Guo M, et al. 2020. Sucralose promotes colitis-associated colorectal cancer risk in a murine model along with changes in microbiota. Front. Oncol. 10: 710. 
  58. Spruss A, Kanuri G, Stahl C, Bischoff SC, Bergheim I. 2012. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab. Investig. 92: 1020-1032. 
  59. Li JM, Yu R, Zhang LP, Wen SY, Wang SJ, Zhang XY, et al. 2019. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome 7: 98. 
  60. Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. 2021. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology 73: 2180-2195. 
  61. Seki K, Kitade M, Nishimura N, Kaji K, Asada K, Namisaki T, et al. 2018. Oral administration of fructose exacerbates liver fibrosis and hepatocarcinogenesis via increased intestinal permeability in a rat steatohepatitis model. Oncotarget 9: 28638. 
  62. Laffin M, Fedorak R, Zalasky A, Park H, Gill A, Agrawal A, et al. 2019. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 9: 12294. 
  63. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. 2017. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One 12: e0178426. 
  64. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514: 181-186. 
  65. Usuda H, Okamoto T, Wada K. 2021. Leaky gut: effect of dietary fiber and fats on microbiome and intestinal barrier. Int. J. Mol. Sci. 22: 7613. 
  66. Camilleri M. 2019. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68: 1516-1526. 
  67. Pasco JA, Holloway KL, Dobbins AG, Kotowicz MA, Williams LJ, Brennan SL. 2014. Body mass index and measures of body fat for defining obesity and underweight: a cross-sectional, population-based study. BMC Obes. 1: 9. 
  68. Ma L, Hu L, Jin L, Wang J, Li X, Wang W, et al. 2020. Rebalancing glucolipid metabolism and gut microbiome dysbiosis by nitrate-dependent alleviation of high-fat diet-induced obesity. BMJ Open Diabetes Res. Care 8: e001255. 
  69. Moayyedi P. 2008. The epidemiology of obesity and gastrointestinal and other diseases: an overview. Dig. Dis. Sci. 53: 2293-2299. 
  70. Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. 2023. Presented at the seminars in cancer biology. 
  71. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638. 
  72. Teixeira TF, Collado MC, Ferreira CL, Bressan J, Maria do Carmo GP. 2012. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr. Res. 32: 637-647. 
  73. Zhi C, Huang J, Wang J, Cao H, Bai Y, Guo J, et al. 2019. Connection between gut microbiome and the development of obesity. Eur. J. Clin. Microbiol. Infect. Dis. 38: 1987-1998. 
  74. Fishman L, Lenders C, Fortunato C, Noonan C, Nurko S. 2004. Increased prevalence of constipation and fecal soiling in a population of obese children. J. Pediatr. 145: 253-254. 
  75. Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA. 2008. Vitamin A intake is inversely related with adiposity in healthy young adults. J. Nutr. Sci. Vitaminol. 54: 347-352. 
  76. Liu S, Song Y, Ford ES, Manson JE, Buring JE, Ridker PM. 2005. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 28: 2926-2932. 
  77. Sabate JM, Jouet P, Harnois F, Mechler C, Msika S, Grossin M, et al. 2008. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes. Surg. 18: 371-377. 
  78. James SL, Muir JG, Curtis SL, Gibson PR. 2003. Dietary fibre: a roughage guide. Int. Med. J. 33: 291-296. 
  79. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 18: 190-195. 
  80. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. 2011. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3: 559-572. 
  81. Hampel H, Abraham NS, El-Serag HB. 2005. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Annal. Int. Med. 143: 199-211. 
  82. Noel RA, Braun DK, Patterson RE, Bloomgren GL. 2009. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care 32: 834-838. 
  83. Chandrasekharan B, Srinivasan S. 2007. Diabetes and the enteric nervous system. Neurogastroenterol. Motil. 19: 951-960. 
  84. Cheemerla S, Balakrishnan M. 2021. Global epidemiology of chronic liver disease. Clin. Liver Dis. 17: 365. 
  85. Abenavoli L, Milic N, Di Renzo L, Preveden T, Medic-Stojanoska M, De Lorenzo A. 2016. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 22: 7006. 
  86. Pendyala S, Walker JM, Holt PR. 2012. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142: 1100-1101. e1102. 
  87. Targher G, Byrne CD. 2017. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat. Rev. Nephrol. 13: 297-310. 
  88. Kessoku T, Kobayashi T, Tanaka K, Yamamoto A, Takahashi K, Iwaki M, et al. 2021. The role of leaky gut in nonalcoholic fatty liver disease: a novel therapeutic target. Int. J. Mol. Sci. 22: 8161. 
  89. Gupta H, Min B-H, Ganesan R, Gebru YA, Sharma SP, Park E, et al. 2022. Gut microbiome in non-alcoholic fatty liver disease: from mechanisms to therapeutic role. Biomedicines 10: 550. 
  90. Rotman Y, Sanyal AJ. 2017. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 66: 180-190. 
  91. Huang W, Kong D. 2021. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomed. Pharmacother. 135: 111235. 
  92. Albillos A, De Gottardi A, Rescigno M. 2020. The gut-liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72: 558-577. 
  93. Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, et al. 2020. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17: 279-297. 
  94. Wong VWS, Tse CH, Lam TTY, Wong GLH, Chim AML, Chu WCW, et al. 2013. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis-a longitudinal study. PLoS One 8: e62885. 
  95. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877-1887. 
  96. Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. 2013. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin. Microbiol. Infect. 19: 338-348. 
  97. Wang HX, Wang YP. 2016. Gut microbiota-brain axis. Chinese Med. J. 129: 2373-2380. 
  98. Brescia P, Rescigno M. 2021. The gut vascular barrier: a new player in the gut-liver-brain axis. Trends Mol. Med. 27: 844-855. 
  99. Obrenovich M, Rai H, Mana T, Shola D, McCloskey B, Sass C, et al. 2017. Dietary co-metabolism within the microbiota-gut-brain-endocrine metabolic interactome. BAOJ Microbiol. 2: 10.2174.  https://doi.org/10.2174
  100. Bella R, Lanza G, Cantone M, Giuffrida S, Puglisi V, Vinciguerra L, et al. 2015. Effect of a gluten-free diet on cortical excitability in adults with celiac disease. PLoS One 10: e0129218. 
  101. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, et al. 2019. The microbiota-gut-brain axis. Physiological Reviews. 
  102. Sanmiguel CP, Jacobs J, Gupta A, Ju T, Stains J, Coveleskie K, et al. 2017. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom. Med. 79: 880-887. 
  103. Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506. 
  104. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. 2015. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43: 817-829. 
  105. Gomaa EZ. 2020. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113: 2019-2040. 
  106. Socala K, Doboszewska U, Szopa A, Serefko A, Wlodarczyk M, Zielinska A, et al. 2021. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 172: 105840. 
  107. Simpson HL, Campbell BJ. 2015. Review article: dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 42: 158-179. 
  108. Obrenovich MEM. 2018. Leaky gut, leaky brain? Microorganisms 6: 107.